Опубликована статья Галавич А. С. под заголовком "Научные аспекты применения технологий и массовых коммуникаций в сфере связи, информационных технологий и их использование в любой форме, в том числе в электронных СМИ, на научно-производственном комплексе по неотложной кардиологии "Emergency Cardiology" включен ВАК в Федеральную службу по надзору в сфере связи, информационных технологий, в которых должны быть опубликованы основные научные работы учёных степени кандидата наук, возможны только с письменного разрешения редакции.

Редакционный совет

Абугов С. А.
Аверков О. В.
Гапишью С. П.
Жирков И. В.
Плавыцкий Д. В.
Синявский Е. В.
Ускен Т. М.
Шамшиев Р. М.
Шпектор А. В.
Аленин Б. Г.
Алпкий М. Н.
Архипов М. В.
Багаева С. Ф.
Барбараш О. Л.
Беличёв О. И.
Барбараш О. Л.
Басов С. Ф.
Бернштейн Ю. И.
Бородин Д. В.
Живков И. В.
Колпаков С. П.
Коротков Ю. Л.
Коростелев Д. А.
Короненок М. В.
Крылов К. С.
Кузнецов К. А.
Кузовлев Е. В.
Лохос Э. О.
Макаров И. В.
Матвеев В. А.
Мельгунов И. В.
Михайлов Е. М.
Муканов Б. И.
Мурзатов И. И.
Мышкин И. М.
Мышкин И. М.
Мысленков В. Э.
Мысляев В. М.
Назаров А. К.
Намазов Р. Н.
Новиков С. Б.
Новиков С. Б.
Наумов Р. С.
Новицкий И. Н.
Оболенский А. В.
Ольхов М. В.
Ольхов М. В.
Островский В. И.
Островский В. И.
Петров С. В.
Неотложная кардиология

Журнал «Неотложная кардиология»

Терещенко С. Н.
Др. мед. наук, профesor. Научно-исследовательский центр кардиологии Минздрава России, Москва

Дубинин С. П.
Др. н. м., профессор. Национальный медицинский исследовательский центр кардиологии Минздрава России, Москва

Комаров А. Л.
Др. мед. наук, профессор. Научно-исследовательский центр кардиологии Минздрава России, Москва

Издательский совет

Абугов С. А.
Др. мед. наук, профессор. Российский научно-исследовательский центр хирургии имени Академика Б. В. Петровского

Алекин М. Н.
Др. мед. наук, профессор. Центральный клинический госпиталь с поликлиникой санатория имени П. Я. Чайковского, г. Москва

Окунев А. И.
Др. мед. наук, профессор. Российская национальная медицинская академия профессиональной подготовки — Центральный медицинский университет, Москва

Скобянкин А. И.
Др. мед. наук, профессор. Российский научно-исследовательский центр кардиологии Минздрава России, Москва

Согласно законодательству, приведенные в журнале сведения о фамилии, имени и отчестве авторов, их научных степенях, ученых званиях, а также сведения о научных центрах, университетах, научных организациях, где работают авторы, являются принципиальными и не могут быть изменены без согласия со стороны авторов.

Электронная версия журнала доступна на сайте: www.acutecardio.ru
СОДЕРЖАНИЕ

Вторичная дилатационная кардиомиопатия на фоне акромегалии
В. И. Фетисова, А. М. Намитоков, Е. Д. Космачева

Secondary dilated cardiomyopathy second to the acromegaly
V. I. Fetisova, A. M. Namitokov, E. D. Kosmacheva

4

Синдром такоцубо: критерии диагностики, осложнения, смертность, рецидивы, лечение, прогноз
С. В. Какорин, А. Р. Овезова, Е. Ю. Ровда, П. Ю. Лопотовский, Н. Б. Павлова

Takotsubo syndrome — diagnostic criteria, complications, mortality, recurrence, treatment, prognosis

11

Использование ультразвукового исследования легких для оценки декомпенсации сердечной недостаточности и необходимости коррекции диуретической терапии
И. В. Жиров, С. Н. Терещенко, Т. А. Павленко

Usage of lung ultrasound for diagnostics of heart failure decompensation and control of diuretic therapy
I. V. Zhirov, S. N. Tereshchenko, T. A. Pavlenko

24

Всероссийские клинические рекомендации по контролю над риском внезапной остановки сердца и внезапной сердечной смерти, профилактике и оказанию первой помощи (часть 8)

National clinical guidelines for the control of the risk of sudden cardiac arrest and sudden cardiac death, their prevention and first aid (part 8)

35
Вторичная дилатационная кардиомиопатия на фоне акромегалии

В. И. Фетисова2, А. М. Намитоков1, Е. Д. Космачева1

1 ГБУЗ «Научно-исследовательский институт — Краевая клиническая больница № 1 им. проф. С. В. Очаповского» Министерства здравоохранения Краснодарского края, г. Краснодар, Россия
2 ФГБОУ ВО «Кубанский государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Краснодар, Россия

Резюме. Длительное течение акромегалии связано с повышенным риском смерти от сердечно-сосудистых осложнений. Ранняя диагностика и своевременное лечение приводят к регрессу многих клинических проявлений и снижению сердечно-сосудистой смертности до показателей по населению в целом. В то же время длительное воздействие на сердечную ткань гормона роста и инсулиноподобного фактора роста 1 в конечном итоге приводит к развитию дилатационной кардиомиопатии и тяжелой сердечной недостаточности. Резекция опухоли не всегда способствует восстановлению сократительной способности миокарда. В отдельных случаях при неэффективности противоопухолевой терапии единственным доступным вариантом лечения сердечной недостаточности является ортотопическая пересадка сердца. В статье представлен случай диагностики акромегалии у пациентки 45 лет, с развившейся дилатационной кардиомиопатией и тяжелой формой левожелудочковой недостаточности.

Ключевые слова: акромегалия, дилатационная кардиомиопатия, сердечная недостаточность

doi: 10.25679/EMERGCARDIOLOGY.2019.67.19.001
Secondary dilated cardiomyopathy
second to the acromegaly

V. I. Fetisova2, A. M. Namitokov1, E. D. Kosmacheva1

1 Research Institute — Regional Clinical Hospital No. 1 NA prof. S. V. Ochapovskiy, Krasnodar, Russia

2 Federal State Budget Educational Institution of Higher Education “Kuban State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnodar, Russia

Abstract. The prolonged acromegaly is associated with an increased risk of fatal cases from cardiovascular complications. Early diagnosis and treatment in the right time lead to a regression of many clinical signs and a reduction in cardiovascular mortality to the indicators of a healthy population. At the same time, long-term exposure of Human Growth Hormone and insulin-like growth factor-1 to heart tissue eventually leads to dilated cardiomyopathy and severe heart failure. Resection of the tumor does not always contribute to the recovery of myocardial contractility. In particular cases, with the failure of antitumor therapy, the only available treatment option for heart failure is orthotopic heart transplantation surgery. The article demonstrates the case of acromegaly diagnosis for a 45-year-old patient with advanced dilated cardiomyopathy and a severe form of left ventricular failure.

Keywords: acromegaly, dilated cardiomyopathy, heart failure

Вторичная дилатационная кардиомиопатия на фоне акромегалии

Особенности изменения морфо-функционального состояния сердечно-сосудистой системы в большей степени связаны с длительностью воздействия на сердечную ткань повышенных концентраций гормона роста и ИФР-1. В зависимости от длительности заболевания в развитии структурно-функциональных изменений сердечно-сосудистой системы выделяют несколько этапов [5]:

1. Ранний этап (длительностью до 5 лет), характеризуется увеличенной сократимостью миокарда, снижением периферического сосудистого сопротивления, увеличением сердечного выброса.

2. Промежуточный этап (от 5 до 15 лет) — развиваются бивентрикулярная гипертрофия, диастолическая дисфункция, нарушение сердечной деятельности.

3. Поздний этап (длительность заболевания более 15 лет) — характерно развитие систолической и диастолической дисфункции (застойная сердечная недостаточность), аритмий.

Нормализация секреции гормона роста и ИФР-1 связана с частичным восстановлением структурно-функциональных изменений сердца у больных акромегалией, однако отдаленный прогноз остается неясным и зависит от многих факторов, в частности от длительности повышенной секреции гормона роста и ИФР-1 [9]. Так, в исследованиях Colao et al. у 50% больных с развивающейся бивентрикулярной гипертрофией миокарда на фоне акромегалии авторы достигли снижения индекса массы миокарда левого желудочка на фоне лечения аналогами соматостатина [12]. В то же время при более длительном течении заболевания, когда происходят выраженные структурно-функциональные изменения миокарда, лечение становится малоэффективным. Например, Sue et al. [25] приводят клиническое описание лечения 22-летнего мужчины с обусловленной акромегалией дилатационной кардиомиопатией с экстримально низкой фракцией выброса.

Описание клинического случая

Больная В., 45 лет, была госпитализирована в больницу в экстренном порядке в состоянии острой левожелудочковой недостаточности, с сатурацией кислорода 70%.

Из анамнеза известно, что изменения внешности, такие как прогрессирующее увеличение лица, верхних и нижних конечностей, отмечают в течение последних 15 лет (с 30-летнего возраста), но по этому поводу за медицинской помощью не обращалась.

В течение последнего года стала беспокоить выраженная одышка в покое и при незначительной физической нагрузке, по этому поводу больная обратилась к кардиологу по месту жительства. По результатам ЭхоКГ (за 6 месяцев до настоящей госпитализации) фракция выброса (ФВ) — 18%, конечный диастолический размер (КДР) левого желудочка (ЛЖ) — 73 мм. Был поставлен диагноз дилатационной кардиомиопатии и рекомендована консультация эндокринолога.

Через полгода пациентка находилась на стационарном лечении в эндокринологическом отделении, где впервые был выставлен диагноз: «Микроденома (соматотропинома) гипофиза. Акромегалия. Оптико-хазимальный синдром. Дилатационная кардиомиопатия» и дана рекомендация обратиться к нейрохирургу. Из лечения рекомендованы аналоги соматостатина продленного действия (препарат Октреотид-депо). На пятые сутки после выписки состояние больной резко ухудшилось, появились приступы удушья в покое, усиливающиеся в положении лежа на спине.

Объективно: состояние пациентки тяжелое, кожные покровы влажные, мокрые, подкожная клетчатка развита нормально. Отеч нижних конечностей. Рост 168 см, вес 92 кг. При осмотре обращают на себя внимание выраженные выступающие лобные бугры, грубые черты лица (широкая переносица, увеличенные надбровные дуги, широкие губы, утолщение кожи, с грубыми складками на лице), нижечелюстной прогнатизм, макроглоссия с отпечатками зубов на боковой поверхности языка, большие ушные раковины. Увеличены кисти, пальцы, стопы, преимущественно в ширину. Грубый голос, речь трудна для восприятия ввиду тяжести состояния и выраженной макроглоссии. Вербальному контакту доступна. Внимание выражены выступающие лобные бугры, грубые черты лица (широкая переносица, увеличенные надбровные дуги, широкие губы, утолщение кожи, с грубыми складками на лице), нижечелюстной прогнатизм, макроглоссия с отпечатками зубов на боковой поверхности языка, большие ушные раковины. Увеличены кисти, пальцы, стопы, преимущенно в ширину. Грубый голос, речь трудна для восприятия ввиду тяжести состояния и выраженной макроглоссии. Вербальному контакту доступна. В месте, время и собственной личности ориентирована правильно. При неврологическом осмотре выявлены положительные рефлексы орального автоматизма (хоботковый, Маринеску—Радовича). Мышечный тонус, в том числе в аксимальной мускула-
туре, нормальный. Сила во всех мышечных группах достаточная. В поез Ромбера не проверялась в связи с тяжестью состояния.

Результаты лабораторных исследований:
1. инсулиноподобный фактор роста — 478 нг/мл (норма 109–284 нг/мл);
2. соматотропин — 32,16 нг/мл (норма 0–10 нг/мл);
3. пролактин 172 мМЕ/мл (норма 59–619 мМЕ/мл);
4. гликированный гемоглобин — 5,9%;
5. уровни АКТГ, кортизола, ТТГ, свободного T4 в норме.

Исследование гормонального статуса и нормальные уровни гормонов в данном случае позволяют исключить гипофизарную недостаточность/смешанный характер опухоли, так как соматотропином в 25–45% случаев сочетается с повышенной секрецией не только гормона роста, но и таких гормонов, как пролактин, ТТГ, АКТГ, ЛГ, ФСГ и других; в таких случаях говорят о смешанных аденомах гипофиза. Такие опухоли характеризуются более агрессивным ростом в раннем возрасте, менее выраженной гормональной, но более высокой пролиферативной активностью, чаще рецидивируют после хирургического лечения [3, 20]. Моноокларная аденома гипофиза отличается медленным развитием и длительным скрытым периодом и имеет более благоприятный прогноз.

На ЭКГ — синусовый ритм с ЧСС 71 уд/мин. Отклонение электрической оси сердца влево. Блокада передней ветви левой ножки пучка Гиса. Признаки гипертрофии миокарда левого желудочка, диффузные изменения в миокарде левого желудочка. Интервал QT — 468 мс (норма при ЧСС 70 уд/мин — 320–390 мс).

К моменту постановки диагноза акромегалии уже у 40% исследуемых (против 12% в контрольной группе) можно обнаружить такие нарушения сердечно-сосудистой системы, как экстрасистолия, пароксизмальная мерцательная аритмия, суправентрикулярная тахиаритмия, слабость синусового узла, но наибольшую опасность, связанную с повышенной вероятностью внезапной смерти, представляют желудочных тахиаритмии [3]. Известно, что у больных акромегалией в 80% случаев регистрируется увеличение длительности интервала QT и, как следствие, — увеличение риска желудочных аритмий [3, 21]. Нарушения ритма при акромегалии, вероятнее всего, связаны с развивающимся интерстициальным фиброзом, который приводит к нарушению распространения импульсов в миокарде, а также структурным и функциональным нарушениям в проводящей системе сердца. Даже после успешного лечения акромегалии частота желудочных аритмий не уменьшается, что связано, вероятно, с необратимостью развившегося фиброза [24].

В анамнезе, со слов пациентки, повышение АД в течение последних 5 лет, максимальное АД 170/100 мм рт. ст. Развитию артериальной гипертонии способствуют такие факторы, как хроническая гиперволемия, увеличение сердечного выброса, снижение продукции предсердного натрийуретического пептида, эндотелиальная дисфункция с повышением сосудистого тонаusa. Артериальная гипертония и аритмии на фоне акромегалии способствуют дальнейшим нарушениям работы сердца. Таким образом, формируется замкнутый порочный круг.

При ЭхоКГ было найдено следующее: выраженная дилатация левых отделов сердца (левое предсердие — 60 мм, КДР ЛЖ — 95 мм, конечный диастолический объем — 485 мл), умеренное расширение правых отделов. Экстремально сниженная сократимость миокарда ЛЖ (ФВ не более 10%), с зонами выраженного гипокинеза и акинезом стенок ЛЖ. Гипертрофия миокарда ЛЖ (межжелудочковая перегородка 11 мм, задняя стенка ЛЖ 12 мм). Кальциноз митрального клапана с явлениями умеренной недостаточности (++/+++) (рис. 1).
Такая картина свидетельствует об имеющейся у пациентки дилатационной кардиомиопатии, развившейся на фоне основного заболевания — акромегалии. Ввиду длительности течения заболевания (около 15 лет) в данном случае преобладает систолическая дисфункция, клапанные изменения в виде недостаточности митрального клапана, так как происходит постепенное нарушение архитектоники сердечной мышцы из-за появления очагов лимфомононуклеарной инфильтрации, участков некроза на фоне усиления апоптоза миоцитов, возникающего вторично вследствие избытка гормона роста и ИФР-1 [16, 22].

По данным компьютерной периметрии глаз: поля зрения на белую метку справа не сужены, слева — сужение верхне-височного квадранта, выпадение нижневисочного квадранта, множество темпоральных парацентральных скотом. Глазные щели D = S, положение глазных яблок правильное, движение — содружественное, в полном объеме. Диплопии нет, содружественная реакция зрачков на свет. Парез конвергенции.

При проведении магнитно-резонансной томографии головного мозга визуализировалось объемное образование интра-супра-параселлярной локализации, размером 52 × 40 × 34 мм с инвазией в ка-вернозные синусы, обрастанием передней мозговой артерии, компрессией третьего желудочка, без признаков гидроцефалии (рис. 2).

По результатам исследований поставлен диагноз: «Гигантская аденома гипофиза с инвазией в ка- вернозные синусы, обрастанием передней мозговой артерии, компрессией третьего желудочка. Акромегалия, активная фаза. Нейроэндокринная кардиомиопатия. Умеренная недостаточность митрального клапана. Хроническая сердечная недостаточность IIБ стадии с приступами острой левожелудочковой недостаточности III функционального класса по NYHA. Симптоматическая артериальная гипертония. Оптико-хиазмальный синдром. Ангиопатия сетчатки по гипертензивному типу. Частичная атрофия зрительного нерва».

Учитывая полученные результаты обследования, пациентке назначена медикаментозная терапия гормонально-активной опухоли гипофиза аналогами соматостатина продленного действия 20 мг подкожно один раз в четыре недели под контролем уровней соматотропного гормона и ИФР-1, с последующей коррекцией дозы исходя из состояния больной и переносимости препарата.

Нейрохирургическая резекция аденомы в данном случае не представляется возможной ввиду распространенности процесса и наличия тяжелой сопутствующей патологии сердца с выраженным снижением сократительной функции миокарда.

Дефекты полей зрения свидетельствуют о расположении аденомы близко к перекресту зрительных нервов. Это является основным противопоказанием против лучевой терапии.

Единственным возможным и оптимальным методом лечения в данном случае являются аналоги соматостатина (в России зарегистрированы два основных препарата этой группы — октреотид и ланреотид). Медикаментозная терапия у 50—60% больных приводит к нормализации уровня гормона роста и ИФР-1, уменьшает симптоматику, а также контро-
Вторичная дилатационная кардиомиопатия на фоне акромегалии

9.

лирует рост опухоли [5]. Кроме того, снижение уровней гормона роста и ИФР-1 до нормальных значений связано со снижением сердечно-сосудистой смертности до показателей по населению в целом [6, 17]. Однако наша пациентка обратилась за медицинской помощью в поздние сроки, когда в миокарде уже преобладали необратимые структурно-функциональные изменения с развитием систолической и диастолической дисфункции. Лечение дилатационной кардиомиопатии в данном случае является симптоматическим и включает в себя терапию хронической сердечной недостаточности.

На сегодняшний день эффективным методом лечения дилатационной кардиомиопатии, развившейся на фоне акромегалии, является пересадка сердца. Но так как у пациентки имеет место распространение опухолевого процесса с прорастанием в соседние структуры головного мозга, она не может быть кандидатом на пересадку сердца.

Сведения об авторах

Фетисова Валерия Игоревна — клинический ординатор кафедры кардиохирургии и кардиологии ФПК и ПС ФГБОУ ВО «Кубанский государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Краснодар, 350063, ул. Седина, 4.
https://orcid.org/0000-0003-1468-5074,
Электронная почта: valmel93@ya.ru

Намитоков Алим Муратович — к. м. н., заведующий кардиологическим отделением № 2 для больных с инфарктом миокарда ГБУЗ «Научно-исследовательский институт — краевая клиническая больница № 1 им. проф. С. В. Очаповского», г. Краснодар, 350901, ул. 1 Мая, 167.
https://orcid.org/0000-0002-5866-506X
Электронная почта: namitokov.alim@gmail.com
Тел.: +7-961-531-7226

Космачева Елена Дмитриевна — д. м. н., заместитель главного врача по лечебной работе ГБУЗ «Научно-исследовательский институт — Краевая клиническая больница №1 им. проф. С. В. Очаповского».
https://orcid.org/0000-0001-8600-0199
Электронная почта: kosmachova_h@mail.ru

Литература

Конфликт интересов. Все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия в данной статье.

Disclosures. All authors have not disclosed potential conflict of interest regarding the content of this paper.
Синдром такоцубо: критерии диагностики, осложнения, смертность, рецидивы, лечение, прогноз

С. В. Какорин, А. Р. Овезова, Е. Ю. Ровда, П. Ю. Лопотовский, Н. Б. Павлова
Государственное бюджетное учреждение здравоохранения Московской области «Красногорская городская больница № 1», г. Красногорск

Резюме. Приводятся эпидемиологические данные, описываются особенности этиологии и патогенеза, критерии диагностики, осложнения, исходы заболевания и лечение синдрома такоцубо. Когда явления сердечной недостаточности отсутствуют, а обструкция выносящего тракта левого желудочка (ЛЖ) не выражена, постановка диагноза возможна только в острой фазе при условии проведения визуализирующих исследований (ЭхоКГ, вентрикулография, МРТ) в первые 36–48 часов с фиксацией последующего регресса нарушений локальной сократимости. Если коронарная ангиография не выявляет окклюзии или гемодинамически значимых поражений коронарных артерий, пациентам с острым инфарктом миокарда рекомендуются оценка диагностических критериев по шкале InterTAK и ЭхоКГ в первые сутки, чтобы выявить «баллонирование» ЛЖ, гиперкинезию базальных отделов, обструкцию выносящего тракта ЛЖ.

Ключевые слова: синдром такоцубо, рецидив такоцубо, регистр InterTAK, баллонирование ЛЖ, интервал QTc, обструкция выносящего тракта ЛЖ, сердечная недостаточность, диагностика, смертность, ЭхоКГ, МРТ

Takotsubo syndrome — diagnostic criteria, complications, mortality, recurrence, treatment, prognosis

State Budgetary Healthcare Institution of the Moscow region "Krasnogorsk City Hospital No. 1", Krasnogorsk

Summary. Here we present epidemiological data, describe the etiology, pathogenesis, diagnostic criteria, complications, disease outcomes, prognosis and treatment of takotsubo syndrome. In case of poor heart failure symptoms and small degree of left ventricle (LV) outflow tract obstruction or their absence, the proper diagnosis can be made only in the acute phase, subject to imaging (echocardiography, ventriculography, MRI) for the first 36–48 hours with subsequent fixation of the regression of local contractility disorders. The attention is paid to the possibility of relapsing takotsubo syndrome. We describe the case of takotsubo syndrome in an elderly woman. In the absence of the coronary occlusion or hemodynamically significant coronary lesions at the coronary angiography all patients with acute myocardial infarction are recommended to be evaluated with the diagnostic criteria on InterTAK scale and echocardiography on first day to identify "balooning" LV basal hyperkinesia parts and LV outflow tract obstruction.

Keywords: takotsubo syndrome, recurrent takotsubo, register InterTAK, balooning LV, QTc interval, obstruction of LV outflow tract, heart failure, diagnosis, mortality, echocardiography, magnetic resonance imaging

Введение
Название кардиомиопатия такоцубо (КТ) было предложено группой авторов из Японии в 1990 г. [1] для пациентов с болью в грудной клетке, подъемом сегмента ST на ЭКГ и повышением уровня кардиоспецифических ферментов, характерных для острого инфаркта миокарда (ОИМ), при отсутствии гемодинамически значимых изменений коронарных артерий по данным коронароангиографии (КАГ). При вентрикулографии выявляется апикальный шарообразный акинез левого желудочка (ЛЖ) [2], в период систолы напоминающего форму горшка для ловли осьминогов (по-японски “takotsubo”) [3].

До недавнего времени КТ определяли как доброкачественную обратимую патологию, которая характеризуется преходящей систолической дисфункцией ЛЖ в виде его апикального «баллонирования» и проявляется как ОИМ в отсутствие видимой обструкции коронарных артерий [4–6]. Однако результаты последних обсервационных исследований показали, что КТ представляет собой тяжелое заболевание с развитием осложнений примерно у 52% пациентов [7, 8]. Термин «кардиомиопатия» относится к первичным заболеваниям сердечной мышцы генетического или неизвестного происхождения. У пациентов с КТ первичная патология сердечной мышцы отсутствует, а общая генетическая основа не выявлена.

В 2015 г. Ассоциация по сердечной недостаточности Европейского сообщества кардиологов предложила использовать термин «синдром такоцубо» (СТ) вместо «кардиомиопатия такоцубо» и выделила первичный и вторичный клинические варианты синдрома. При первичном варианте синдром манифестирует как ОИМ. Вторичный вариант СТ развивается в сочетании с различными заболеваниями и встречается чаще у пациентов, госпитализированных по другим причинам [9]. Описаны случаи развития вторичного СТ при эндокринных, неврологических, пульмонологических, гастроэнтерологических и психиатрических заболеваниях, во время операций, в том числе малоинвазивных, и в процессе наркоза [9]. Также в литературе имеются описания развития СТ при выполнении диагностических процедур, например при стресс-тестах [9], и в других ситуациях, например на фоне рецидивирующей тром-
Прогноз заболевания неблагоприятный, связан с гипертазией, что усугубляет проявления сердечной недостаточности клапана, обструкцию ВТЛЖ и митральную регургитацию переднее систолическое движение митрального клапана, обструкцию ВТЛЖ и митральную регургитацию, что усугубляет проявления сердечной недостаточности клапана, обструкцию ВТЛЖ и митральную регургитацию.

При первичном варианте СТ пациенты испытывают боль в грудной клетке и одышку после сильного эмоционального или физического стресса и госпитализируются с появлением на ЭКГ подъема сегмента ST или глубоких отрицательных зубцов T; при анализе крови определяется умеренное повышение уровня тропонина, а при электроанограмме (ЭКГ) выявят нарушения локальной сократимости передних сегментов и верхушки ЛЖ, сниженение фракции выброса (ФВ) в пределах 20–50% [13]. В настоящее время накоплены данные по различным вариантам локализации, площади поражения и сочетания преходящего «баллонирования» левого и правого желудочков при СТ [14].

Если в стационаре по тем или иным причинам не выполняется КАГ, заболевание не может быть диагностировано, и пациентов лечат по протоколу консервативного ведения острого коронарного синдрома (ОКС). В случае летального исхода в секционном зале не находят тромбоза в коронарных артериях, а структурные изменения сердца и коронарных артерий при СТ отсутствуют [15]. Поэтому изменения на ЭКГ и повышенный уровень тропонина всегда являются поводом для активного обсуждения на клинических конференциях, и если не обратить внимание на апикальное «баллонирование» ЛЖ, то при выполнении ЭхоКГ СТ также не будет диагностирован.

Прогноз

Прогноз заболевания неблагоприятный, связан с развитием осложнений и существенной смертностью, аналогичными таковым при ОИМ [6]. Частыми осложнениями являются острая сердечная недостаточность, кардиогенный шок, аритмии, обструкция выносящего тракта ЛЖ (ВТЛЖ), острая миородная недостаточность и тромбы в полостях желудочков [6]. Сердечная недостаточность, обусловленная систолической дисфункцией ЛЖ, относится к наиболее частым осложнениям острой фазы СТ (12—45% случаев), а у 10% пациентов, госпитализированных с СТ, развивается кардиогенный шок [7, 17]. Обструкция выносящего тракта ЛЖ встречается в 14–25% случаев, чаще при апикальной форме. Гипертрофия базальной части ЛЖ по механизму Вентури вызывает переднее систолическое движение митрального клапана, обструкцию ВТЛЖ и митральную регургитацию, что усугубляет проявления сердечной недостаточности. Градиент в выходном отделе ЛЖ приводит к возникновению громкого систолического шума. Заподозрить СТ можно, выявив вновь появившийся систолический шум в III—IV межреберных рядах слева от грудины, который в динамике быстро прогрессирует. При ЭхоКГ существенным считается градиент давления выносящего тракта ЛЖ более 25 мм рт. ст., а градиент более 40 мм рт. ст. связан с высоким риском развития тяжелой сердечной недостаточности. Таким образом, обструкция ВТЛЖ является независимым прогностическим фактором смерти у пациентов в острой фазе СТ. Разрыв миокарда встречается крайне редко.

К независимым прогностическим факторам развития острой сердечной недостаточности отнесены: пожилой возраст, низкая ФВ ЛЖ в момент обращения за медицинской помощью. Во многих случаях требуются искусственная вентиляция легких, применение препаратов с положительным инотропным действием и внутриаортальная баллонная контрапульсация, частота применения которой достигает 17% [18]. В острой фазе СТ появляются желудочковые нарушения сердечного ритма, с развитием фибриляции желудочков в 4–6% случаев [19–21]. В редких случаях желудочковые аритмии регистрируются через несколько недель после острой фазы СТ, когда функция ЛЖ уже нормализовалась [17]. Описаны случаи развития брадикардии, обусловленной атриовентрикулярной блокадой, а также асистолии [17].

Согласно результатам когортного исследования NIS-USA, смертность у пациентов с СТ составляет 4,2% в год [22, 23]. По данным регистра SWEDENHEART [8, 24], у пациентов с СТ смертность в течение 3 лет после острой фазы была сходной со смертностью после ОИМ. Позднее были опубликованы результаты метаанализа 37 исследований, включавших 2120 случаев СТ; смертность составляла 4,5% [26]. Сходные результаты были опубликованы в ходе создания регистра InterTAK [8, 25]. Однако прогностические факторы смерти при СТ до сих пор неизвестны [27]. Результаты анализа смертности показали, что наибольшая смертность отмечается в первые 4 года после постановки диагноза и обусловлена не заболеваниями сердца, а другими причинами, преимущественно зло качественными новообразованиями [28, 29]. Гипотеза относительно такой связи мы в литературе не встретили, но результаты исследований последних лет указывают на сочетание СТ с онкологическими заболеваниями.

В 2019 г. [30] опубликованы данные о взаимосвязи между наличием у пациентов с СТ и ОИМ отрицательных зубцов T на ЭКГ и осложнениями и смертностью в краткосрочной и долгосрочной перспективе. База данных состояла из 123 пациентов с СТ и 80 пациентов с ОИМ без подъема сегмента ST. Частота внутрибольничных осложнений, таких как дыхательная недостаточность с необходимостью респираторной поддержки (60,2, и 6,3% соответственно; p < 0,01), тромбоэмболические события
(13,8 и 2,5% соответственно; \(p < 0,01 \)) и кардиогенный шок (18,9 и 8,8% соответственно; \(p = 0,05 \)), была достоверно выше у пациентов с СТ, чем у пациентов с ОИМ. Такие сердечно-сосудистые факторы риска, как сахарный диабет (23,6 и 45,0% соответственно; \(p < 0,01 \)) и артериальная гипертензия (57,7 и 78,8% соответственно; \(p < 0,01 \)), реже встречались у пациентов с СТ, чем у пациентов с ОИМ. Краткосрочная смертность достоверно не различалась, однако смертность в течение 5 лет в группе СТ была значительно выше, чем в группе ОИМ (25,2 и 7,5% соответственно; \(p < 0,01 \)) и кардиогенный шок (13,8 и 2,5% соответственно; \(p < 0,01 \)), что значительно выше, чем в группе ОИМ (25,2 и 7,5% соответственно; \(p < 0,01 \)) и кардиогенный шок (13,8 и 2,5% соответственно; \(p < 0,01 \)). Кроме того, вероятность смерти от ОИМ в течение 5 лет в группе пациентов с СТ была значительно выше, чем в группе ОИМ (25,2 и 7,5% соответственно; \(p < 0,01 \)). Многофакторный анализ показал, что независимыми прогностическими факторами смертности в течение 5 лет являются мужской пол, СКФ < 60 мл/мин и онкологические заболевания в анамнезе. Таким образом, исследования показали, что у пациентов с СТ смертность выше, чем у населения в целом, и сопоставима со смертностью от ОИМ.

Патогенез синдрома такоцубо

Предложено множество теорий патогенеза СТ: спазм коронарных артерий [31], обструкция выпоносящего тракта ЛЖ [32], токическое действие катехоламинов [33], снижение резерва коронарного кровотока [34], эндотелиальная дисфункция [35], негативное действие катехоламинов [33], снижение резерва коронарного кровотока [34], эндотелиальная дисфункция [35], снижение симпатического иннервации [38], снижение чувствительности клеток к катехоламинам [38]. В результате развития катехоламинового повреждения миокарда и спазма субэндокардиальных коронарных артерий [39, 40], в базальной области ЛЖ плотность симпатических нервных окончаний на 40% выше, чем в апикальной. Наличие β-адренорецепторов высокими дозами катехоламинов переключает синтез белков-мессенджеров со стимулирующего (Gs-белок) на ингибирующий (Gi-белок), что нарушает чувствительность клетки к катехоламинам [38]. В результате развиваются катехоламиновое повреждение миокарда и спазм субэндокардиальных коронарных артерий [39, 40].

В базальной области ЛЖ плотность симпатических нервных окончаний на 40% выше, чем в апикальной. Наличие β-адренорецепторов более выражено в апикальной части ЛЖ и уменьшается к его базальной части. Поэтому воздействие катехоламинов на верхушку ЛЖ более значительно, чем на базальную область [41]. В экспериментах избыток катехоламинов приводит к транзиторной дисфункции ЛЖ, которая при уменьшении концентрации катехоламинов регрессирует [42]. Уровни катехоламинов (норадреналина, адреналина и допамина) в плазме пациентов с СТ в 3 раза выше, чем у пациентов с ОИМ [41, 42]. Обсуждается гипотеза патогенеза микрососудистой стенокардии [43], обусловленной микроваскулярным спазмом коронарных артерий [44]. Многообразие теорий патогенеза говорит о том, что объяснить причину и различную продолжительность времени до регресса нарушений локальной сократимости миокарда пока не представляется возможным.

В 2006 г. СТ был официально отнесен к группе стресс-индуцированных кардиомиопатий [45]. Исследования последних лет показали, что физические и психические триггерные механизмы встречаются чаще, чем психогенные (36 и 27,7% случаев соответственно), а у 28,5% пациентов не удается выявить триггерного механизма [46]. В систематизированном обзоре 104 случаев СТ исследователи отметили, что молодые пациенты чаще были женского пола и физический стресс чаще психического провоцировал развитие заболевания [16, 47]. В Международном регистре СТ на 2018 г. было зарегистрировано 1750 пациентов, 90% из них составляли женщины 66–80 лет, 10% — мужчины. Описаны случаи заболевания у детей [48]. У мужчин и молодых женщин СТ встречается редко, преимущественно у лиц с психическими заболеваниями, а также при алкогольной или опиоидной абstinenceции. По данным литературных обзоров, 57,2% больных являются азиатами, 40% — бельми, 2,8% относятся к другим расам [49].

Результаты исследований разных лет демонстрируют, что в 1,7–2,2% случаев у пациентов с предполагаемым ОИМ в дальнейшем диагностируется СТ [50, 51]. В нашей клинике в группе пациентов с ОИМ такоцубо диагностируется в 1,9% случаев.

Диагностика синдрома такоцубо

В 2018 г. опубликованы результаты анализа регистра International Takotsubo Diagnostic Criteria (InterTAK Diagnostic Criteria) [52]. Было выделено 8 диагностических критериев синдрома.

1. Преходящая дисфункция ЛЖ (гипокинезия, акинезия) или депрессия сегмента ST, инверсия зубца T и удлинение интервала QTc.

2. Синдрому такоцубо могут предшествовать неврологические нарушения (микровазкулярный спазм мозга, ангиопатия), а также при алкогольной или опиоидной абstinenceции.

3. Триггерными факторами смертности в течение 5 лет являются артериальная гипертония (57,7% случаев), сахарный диабет (23,6% случаев) и кардиогенный шок (13,8% случаев).

4. Многообразие теорий патогенеза микровазкулярной стенокардии [43], обусловленной микроваскулярным спазмом коронарных артерий [44], многообразие теорий патогенеза говорит о том, что объяснить причину и различную продолжительность времени до регресса нарушений локальной сократимости миокарда пока не представляется возможным.

В 2006 г. СТ был официально отнесен к группе стресс-индуцированных кардиомиопатий [45]. Исследования последних лет показали, что физические и психические триггерные механизмы встречаются чаще, чем психогенные (36 и 27,7% случаев соответственно), а у 28,5% пациентов не удается выявить триггерного механизма [46]. В систематизированном обзоре 104 случаев СТ исследователи отметили, что молодые пациенты чаще были женского пола и физический стресс чаще психического провоцировал развитие заболевания [16, 47]. В Международном регистре СТ на 2018 г. было зарегистрировано 1750 пациентов, 90% из них составляли женщины 66–80 лет, 10% — мужчины. Описаны случаи заболевания у детей [48]. У мужчин и молодых женщин СТ встречается редко, преимущественно у лиц с психическими заболеваниями, а также при алкогольной или опиоидной абstinenceции. По данным литературных обзоров, 57,2% больных являются азиатами, 40% — бельми, 2,8% относятся к другим расам [49].

Результаты исследований разных лет демонстрируют, что в 1,7–2,2% случаев у пациентов с предполагаемым ОИМ в дальнейшем диагностируется СТ [50, 51]. В нашей клинике в группе пациентов с ОИМ такоцубо диагностируется в 1,9% случаев.
5. Уровни биомаркеров некроза миокарда (тропонин) в большинстве случаев умеренно повышены; значительно возрастает уровень мозгового натрийуретического пептида.
6. Наличие стенозов коронарных артерий атеросклеротического генеза не противоречит наличию синдрома такоцубо.
7. Отсутствуют признаки инфекционного миокардита.
8. Преимущественно страдают женщины в постmenoпаузе.

Таким образом, СТ не имеет ни одного патогномоничного симптома. Наиболее специфичным признаком (специфичность 99%) является несоответствие площади выявленных при ЭхоКГ нарушений локальной сократимости бассейну кровоснабжения одной коронарной артерии. Важно проводить дифференциальную диагностику с феохромоцитомой, так как одним из ее осложнений является кардиомиопатия с систолической дисфункцией. При этом возможно развитие острого миокардита и фокального миокардиального фиброза.

Если при поступлении в стационар по результатам ЭКГ выявляется подъем сегмента ST и повышен уровень тропонина, экстренно выполняется КАГ [53]. Если признаков окклюзии коронарных артерий нет, оцениваются маркеры миокардита (симптомы инфекции, повышение СРБ, СОЭ, наличие пароксизмального выпота). Затем выполняется магнитно-резонансная томография (МРТ) миокарда с отсроченным контрастированием, и только в случае отсутствия позднего накопления гадолиния ставят диагноз СТ. МРТ следует проводить всем пациентам с подозрением на СТ в первые 2–5 дней, чтобы выявить нарушение кинетики [54]. МРТ позволяет оценить региональную функцию левого и правого (ПЖ) желудочков, а также распространенность нарушений локальной сократимости. Примерно в 30% случаев СТ в процесс вовлекается ПЖ [55]. У пациентов с СТ и злокачественными новообразованиями по данным МРТ часто наблюдается поражение обоих желудочков, у них сильнее выражена диссихронность и высок риск смерти [56]. МРТ-критерии СТ в острой фазе включают комбинацию типичных региональных нарушений движения стенки, отека и отсутствия признаков обратимого повреждения тканей (позднего усиления сигнала гадолинием). В острой фазе СТ по усилению интенсивности сигнала при помощи T2-звешенного МРТ-изображения можно выявить отек миокарда ЛЖ с диффузным или трансмуральным распределением, которое по локализации совпадает с участками нарушения локальной сократимости, что отличает СТ от миокардита и ОИМ [57]. В дальнейшем динамика ЭхоКГ выявляет регресс акинезии, дискинезии. В случае отсутствия на ЭКГ подъема сегмента ST предложенная диагностическая шкала InterTAK [58] (табл. 1).

Таблица 1. Диагностическая шкала InterTAK

<table>
<thead>
<tr>
<th>Критерий</th>
<th>Баллы (всего 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Женский пол</td>
<td>25</td>
</tr>
<tr>
<td>Эмоциональный триgger</td>
<td>24</td>
</tr>
<tr>
<td>Физический триgger</td>
<td>13</td>
</tr>
<tr>
<td>Отсутствие депрессии ST</td>
<td>12</td>
</tr>
<tr>
<td>Психические расстройства</td>
<td>11</td>
</tr>
<tr>
<td>Неврологические расстройства</td>
<td>9</td>
</tr>
<tr>
<td>Удлинение QTc</td>
<td>6</td>
</tr>
</tbody>
</table>

У пациентов, набравших менее 31 балла, в 95% случаев был верным диагноз ОИМ [58]. Другие авторы считают, что, если результат по шкале InterTAK более 70 баллов, а ЭхоКГ выявляет циркулярное апикальное, срединное или базальное баллонирование, надо ставить диагноз СТ. Если результат менее 70 баллов, необходим дифференциальный диагноз с ИБС и миокардитом [52].

Рецидивы заболевания

В литературных источниках данные о частоте рецидивов СТ ограничены. Причина в небольшой продолжительности наблюдений в большинстве исследований. Доказать наличие рецидива СТ возможно, только зафиксировав повторение острого периода, но если ЭхоКГ не выполнена в первые дни заболевания, то через несколько дней баллонирование миокарда может регрессировать и утверждать это уже невозможно. В 2015 г. опубликованы данные, в которых восстановление ст систолической функции ЛЖ, оцениваемой методами визуализации сердца, в динамике, составляет 3–6 мес [9]. По данным Heggemann et al., ФВ, средняя продольная и радиальная деформации увеличились с 42 ± 9%, 10,6 ± 5,5% и 20,1 ± 17,3% на момент госпитализации до 59 ± 8%, 17,6 ± 3% и 50,2 ± 17% соответственно через 34 ± 16 дней [59]. В последние годы в литературе представлены описания случаев, когда признаки баллонирования верхушки ЛЖ и обструкции выносящего тракта ЛЖ регрессировали в более ранние сроки [60, 61]. Один исследователи считают, что вероятность повторения симптомов минимальна [6], другие сообщают, что частота рецидива в течение 5 лет может достигать 5–22% [24, 28, 49, 61]. В исследовании Singh et al. показано, что частота рецидивов СТ составляет около...
1,5% [62]. В недавнем метаанализе приведена частота рецидивов за 5 лет наблюдения, равная 5–10% [63]. Возможность профилактики рецидива СТ не была показана ни в одном клиническом исследовании. Теоретически профилактическое действие в отношении избыточной выработки катехоламинов могли бы оказывать β-адреноблокаторы. Однако есть данные о рецидивах у пациентов, принимавших β-адреноблокаторы, и результаты метаанализов, говорящие об отсутствии влияния β-адреноблокаторов на риск рецидива [64, 65].

Клинический случай синдрома такоцубо

Пациентка Б., 77 лет, в течение 3 дней отмечала постоянные боли в области сердца, не связанные с физической нагрузкой, и одышку при небольшой физической нагрузке. Она обратилась в поликлинику, где на ЭКГ были зафиксированы комплексы QS V1–V2, подъем сегмента ST и двуфазные зубцы T V2–V4, отрицательные зубцы T в отведениях I, II, aVL, aVF, V5–V6, интервал QТc, равный 552 мс (рис. 1). При лабораторном исследовании определен повышенный уровень тропонина. Пациентка была госпитализирована в отделение реанимации и интенсивной терапии с диагнозом ОИМ с подъемом сегмента ST.

Данные объективного обследования: пациентка эмоционально лабильна, астенического телосложения. Рост 152 см, вес 52 кг. При аускультации сердца выслушивался систолический шум в III–IV межреберьях слева от грудины. ЧСС 68 уд./мин. АД 90/50 мм рт. ст. Уровень тропонина I при поступлении 1,11 нг/мл; через 24 часа 0,871 нг/мл. Уровень NT про-BNP в сыворотке крови 720 пг/мл (норма 80–250 пг/мл). На основании жалоб, лабораторных и инструментальных данных выставлен диагноз: ОИМ с подъемом сегмента ST.

Трансторакальная ЭхоКГ, выполненная 21 мая 2018 г., в первые сутки госпитализации (рис. 3): дилатация левого предсердия (объем 63 мл); умеренная концентрическая гипертрофия миокарда ЛЖ; акинез верхушечных и передне-перегородочных сегментов, циркулярное апикальное и срединное «баллонирование» ЛЖ; гиперкинез базальных отделов ЛЖ с формированием незначительной обструкции ВТЛЖ, максимальный градиент давления — 30 мм рт. ст.; ФВ ЛЖ по Симпсону 40%; умеренная митральная регургитация; признаки легочной гипертензии, СДЛА — 55 мм рт. ст.

На третий день лечения при аускультации сердца перестал выслушиваться систолический шум, обусловленный обструкцией ВТЛЖ. На восьмой день при повторной ЭхоКГ гиперкинеза базальных отделов ЛЖ и зон нарушения локальной сократимости выявлено не было, митральной регургитации также

Рисунок 1. ЭКГ пациентки Б. при поступлении в стационар.
Figure 1. Patient B’s admitting ECG.

Рисунок 2. Коронарные аниограммы пациентки Б. А, Б — передняя нисходящая артерия; В — правая коронарная артерия.
Figure 2. B’s coronary angiograms. A, B — LAD; C — RCA.
не определялось, ФВ ЛЖ увеличилась до 58%. Признаков обструкции ВТЛЖ не отмечалось, легочная гипертензия снизилась до 32 мм рт. ст. Объем левого предсердия уменьшился до 54 мл.

По данным суточного мониторирования ЭКГ: синусовый ритм, средняя ЧСС днем 69 уд/мин, ночью 55 уд/мин, максимальная ЧСС — 96 уд/мин, минимальная — 45 уд/мин. Зафиксирована 331 наджелудочковая экстрасистола (НЖЭС), максимум 57 за час, в том числе 5 парных; 43 желудочковые экстрасистолы. Постоянно регистрировались отрицательные зубцы T в отведении V5, динамики сегмента ST не отмечалось.

Через 2 месяца пациентка госпитализирована в плановом порядке для повторного обследования. По результатам ЭхоКГ зон нарушения локальной сократимости не выявлено, ФВ 59%. Данные суточного мониторирования ЭКГ: синусовый ритм, средняя ЧСС днем 68 уд/мин, ночью 57 уд/мин, максимальная ЧСС — 102 уд/мин, минимальная — 46 уд/мин. Зафиксированы частые НЖЭС: 1712, до 140 в час, преимущественно в ночные часы, куплетов 7; 300 узловых экстрасистол. Динамики сегмента ST не отмечалось.

Через 6 месяцев мы повторили обследование. По данным ЭхоКГ зон нарушения локальной сократимости не выявлено. ФВ 59%. Признаков легочной гипертензии не выявлено. Данные ЭхоКГ в динамике представлены в табл. 2.

На рис. 4 представлены ЭКГ за 6 месяцев. Прослеживается динамика формирования рубцовых изменений передне-септальной локализации, сохраняется QTc до 470 мс, что является прогностическим фактором смерти от аритмии у пациентов с СТ [60, 68]. По амбулаторным картам пациентки Б. проанализированы ЭКГ за последние 35 лет. Увеличение интервала QTc более 0,44 с отмечено с 2015 г., в 2016 г. он составлял 0,46 с.

<table>
<thead>
<tr>
<th>Показатель ЭхоКГ</th>
<th>Дата исследования</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echocardiography indicator</td>
<td>Research date</td>
</tr>
<tr>
<td>Объем левого предсердия, мл</td>
<td>The volume of the left atrium, ml</td>
</tr>
<tr>
<td>21.05.2018</td>
<td>28.05.2018</td>
</tr>
<tr>
<td>63</td>
<td>54</td>
</tr>
<tr>
<td>КДО, мл</td>
<td>EDV, ml</td>
</tr>
<tr>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>ФВЛЖ по Симпсону, %</td>
<td>Simpson’s LVEF, %</td>
</tr>
<tr>
<td>40</td>
<td>58</td>
</tr>
<tr>
<td>СДЛА, мм рт. ст.</td>
<td>PASP, mmHg</td>
</tr>
<tr>
<td>55</td>
<td>32</td>
</tr>
</tbody>
</table>

КДО — конечно-диастолический объем; СДЛА — систолическое давление в легочной артерии; ФВЛЖ — фракция выброса левого желудочка.

EDV — end-diastolic volume; PASP — pulmonary artery systolic pressure; LVEF — left ventricular ejection fraction.
Описанный клинический случай типичен для первичного СТ. Острая фаза заболевания с наличием кардиальной боли, появлением изменений на ЭКГ по типу ОИМ с небольшим повышением уровня тропонина, баллонированием верхушки ЛЖ с гиперкинезом базальных отделов и небольшой обструкцией выносящего тракта, послужившими причинами снижения АД до 90/60 мм рт. ст. и появления одышки как признака острой сердечной недостаточности, подтвержденной повышением уровня натрийуритического пептида в сыворотке крови. Обращает на себя внимание наличие систолического шума при аускультации сердца в III–IV межреберье слева от грудины, который перестал выслушиваться через 2 дня, так как был обусловлен преходящей обструкцией выносящего тракта ЛЖ. В дальнейшем отмечены регресс «баллонирования» и возрастание ФВ ЛЖ с 40 до 56% в течение 8 дней. По данным КАГ, выполненной в первые сутки от начала заболевания, гемодинамически значимые изменения коронарных артерий отсутствуют. Количество баллов по шкале InterTAK составило 67. Все показатели также соответствуют диагностическим критериям клиники Мейо [68]. Виду высокого риска осложнений в острой фазе и высокой смертности в отдаленном периоде целесообразно длительное плановое наблюдение этой группы пациентов с целью предупреждения и минимизации риска рецидивов. Учитывая литературные данные о высоком риске 5-летней смертности и возможной связи со злокачественными новообразованиями, пациентку рекомендовано диспансерное обследование два раза в год.

В соответствии с диагностическими критериями InterTAK мы отметили значимые связанные со стрессом события в жизни пациентки, а именно: травмы, хирургические вмешательства, переусложненные заболевания, и сопоставили их с данными ЭКГ и ЭхоКГ. Отличительной особенностью представленного нами клинического случая является наличие медицинской документации (амбулаторные карты и выписные эпикризы) и ЭКГ, начиная с 1983 г., а результатов ЭхоКГ — с 2010 г. На рис. 5 схематично представлены заболевания и травмы, которые сопоставлены по времени с данными ЭКГ и ЭхоКГ. В 2010 г. перенесенная закрытая черепно-мозговая трава совпадает по времени с появлением изменений на ЭКГ, а по данным ЭхоКГ зафиксированы гипокинез межжелудочковой перегородки, передней стенки и верхушки ЛЖ, что послужило основанием для диагноза ОИМ. Типичного для СТ баллонирования верхушки ЛЖ зафиксировано не было, что объясняется техническими сложностями выполнения ЭхоКГ в первые дни поступления в стационар и невозможностью выполнить КАГ в 2010 г. Следует отметить, что приблизительно у 10% пациентов с черепно-мозговыми травмами имеются острые изменения ишемического характера на
ЭКГ, повышенные уровни кардиоспецифических ферментов и острая обратимая левожелудочковая недостаточность при практически неизмененных коронарных артериях [66].

В 2015 г. пациентка находилась на стационарном лечении с диагнозом нестабильной стенокардии, и по результатам ЭхоКГ, выполненной в это время, зон нарушения локальной сократимости миокарда не было. Можно предположить, что в 2010 г. манифестировалась острая фаза СТ. В 2016 г. перелом шейки бедра и эндопротезирование тазобедренного сустава совпадают с подъемом сегмента ST до 1 мм de novo, появлением зубца QS V2–V3, однако ЭхоКГ тогда не проводили.

Анализ физических и эмоциональных стрессов за 16 лет показал их совпадение по времени с возникновением и регрессом изменений на ЭКГ, а также с появлением боли за грудиной и одышки. Наличие атипичного «баллонирования» ЛЖ мы зафиксировали только во время последней госпитализации. На основании данных регистра InterTAK и представленных в литературе описаний клинических слу-

чаях СТ баллонирование верхушки ЛЖ может ре-
грессировать через несколько дней. Таким образом, гипо- и акинез верхушки ЛЖ, которые появились в 2010 г. и регрессировали у пациентки в 2015 г. в периоды ее госпитализаций в стационары, может расцениваться как СТ, который не был выявлен, по-
скольку в первые дни острой фазы заболевания не проводили ЭхоКГ. Наши данные совпадают с предпо-
ложениями о возможности рецидива СТ [61] и с даними других авторов, говорящими о регрессии изменений на ЭКГ через 5–6 месяцев [67]. Острая фаза СТ чаще провоцируется физическими триггерами, чем психогенными (36 и 27,7% случаев соответственно), а в 28,5% случаев тритгерный меха-
низм выявить не удается [46].

Лечение

В связи с предполагаемым ОИМ с подъемом сег-
мента ST всем пациентам с СТ на начальном этапе
лечения проводят антитромботическую терапию,
включая двухкомпонентную антиагрегантную те-
рапию (аспирин и антагонист рецепторов P2Y12) и
низкомолекулярный гепарин [52]. После исключе-
ния ОИМ, в соответствии с согласованным мнением
экспертов, считается обоснованным прекращение
приема антагонистов рецепторов P2Y12.

Тактика выбора терапии определяется наличи-
ем осложнений. Сердечная недостаточность, обусловленная систолической дисфункцией ЛЖ, относи-
тается к наиболее частым осложнениям острой фазы СТ (12—45% случаев) [17]. У 10% госпитализирован-

Рисунок 5. Заболевания и травмы, которые сопоставлены с данными Экг и Эхокг. ЗчМт — закрытая черепно-мозговая травма; ЛЖ — левый желудочек; МЖП — межжелудочковая перегородка; ПИКС — постинфарктный кардиосклероз.

Figure 5. Diseases and injuries matched to ECG and ultrasound data. IVS — interventricular septum; LV — left ventricle.
Заключение

Анализ литературы по клиническим случаям СТ демонстрирует их преимущественно описательный характер. Данные многоцентровых рандомизированных исследований отсутствуют, представлены только согласованные мнения экспертов, имеющие уровень документальности С. В настоящее время не определены меры профилактики заболевания. Основываясь на опубликованных результатах регистра InterTAK, предложенных критериях для постановки диагноза, результатах анализа опубликованных клинических случаев, можно сделать вывод, что течение заболевания определяется степенью обструкции выносящего тракта ЛЖ, а именно систолическим градиентом в выносящем тракте, площадью нарушения локальной сократимости миокарда и выраженностью сердечной недостаточности. Случаи СТ, осложненного сердечной недостаточностью или кардиогенным шоком, в современной клинике, имеющей в своем составе рентгенопрофункциональное, должны быть диагностированы. Диагностика СТ в более легких случаях, когда явления сердечной недостаточности отсутствуют, а обструкция выносящего тракта ЛЖ не выражена, возможна только в первые дни острой фазы при условии проведения визуализирующих исследований миокарда (ЭхоКГ, вентрикулография, МРТ) с фиксацией последующего регресса нарушений локальной сократимости. Прогноз при синдроме такоцубо по окончании острого периода заболевания неблагоприятный и характеризуется 5-летней смертностью, значительно превышающей смертность у пациентов с инфарктом миокарда.

Сведения об авторах

Какорин Сергей Валентинович — к. м. н., вед. н. с. РЦ Красногорской городской больницы № 1. https://orcid.org/0000-0003-2421-9165
Электронная почта: kakovin-s@yandex.ru

Овезова Азиза Рустамовна — врач-кардиолог РЦ Красногорской городской больницы № 1. https://orcid.org/0000-0001-8054-8241
Электронная почта: ovezova-aziza@mail.ru

Ровда Евгений Юрьевич — к. м. н., заведующий кардиологическим отделением РЦ Красногорской городской больницы № 1. https://orcid.org/0000-0003-1133-931X
Электронная почта: svveter@rambler.ru

Лопотовский Павел Юрьевич — к. м. н., заместитель главного врача Красногорской городской больницы № 1, руководитель регионального сосудистого центра. https://orcid.org/0000-0001-6788-4136
Электронная почта: lopotovski@mail.ru

Павлова Наталья Борисовна — к. м. н., заведующая отделением функциональной диагностики Красногорской городской больницы № 1.
https://orcid.org/0000-0002-4389-2876
Электронная почта: nbpavlova@mail.ru

Литература

45. Панагов З. Г., Шериева А. Ю., Гудиева И. Р. Особенности клинической картины, современных аспектов диагностики и лечения синдрома такоцубо (стрессовой кардиомиопатии) // Медицина: вызовы сегодняшнего дня: материалы V Междунар. науч. конф. (СПб, июль 2018 г.). — СПб.: Свое издательство, 2018; с. 5–18.

52. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P et al. Clinical characteristics and cardiovascular magnetic resonance

58. Сизов А. В., Шлойдо Е. А., Исаков В. А. и др. Кардиомиопатия такоцубо. Дневник Казанской медицинской школы IV (XVIII), декабрь 2017 г.; с. 140–144.

64. Литвиненко Р. И., Шуленин С. Н., Куликов А. Н. и др. О дифференциальной диагностике транзиторной ишемии миокарда — такоцубо кардиомиопатии. Вестник Российской военно-медицинской академии 2013; 41:84–93.

Использование ультразвукового исследования легких для оценки декомпенсации сердечной недостаточности и необходимости коррекции диуретической терапии

И. В. Жиров, С. Н. Терещенко, Т. А. Павленко

Институт клинической кардиологии им. А. Л. Мясникова ФГБУ «НМИЦ кардиологии» Минздрава России, г. Москва, Россия

Резюме. Несмотря на развитие технологий и обилие различных диагностических методов обследования, в настоящее время сохраняется потребность в максимально быстрой и точной оценке состояния пациентов, поступающих в стационар с нарастанием одышки, которым требуется срочно провести дифференциально-диагностический поиск причины данного симптома. Особое внимание следует уделять пациентам с сердечной недостаточностью, у которых одышка может быть обусловлена как декомпенсацией явлений сердечной недостаточности, так и иными кардиальными и экстракардиальными причинами. Таким пациентам не всегда возможно выполнить рентгенографию органов грудной клетки для оценки степени застоя по малому кругу кровообращения; ее проведение может быть затруднительным у тяжелых пациентов, выполнение же данного исследования в положении лежа имеет ограничения по визуализации. Кроме того, рентгенологическая картина нередко отстает от истинного состояния пациента. Стандартная ЭхоКГ с оценкой давления в легочной артерии, размера нижней полой вены, конечно-диастолического давления в левом желудочке занимает до 30 минут, а кроме того, может быть затруднена ввиду вынужденного положения пациента, его конституциональных особенностей и невозможности обеспечить хорошее ультразвуковое окно. Аускультативная картина и физикальный осмотр пациента также зачастую не дают однозначного ответа на вопрос об истинной причине одышки. Очевидно, что необходим максимально быстрый и простой метод оценки состояния легких и дальнейшей дифференциальной диагностики. Ультразвуковое исследование легких становится в руках клинициста прекрасным диагностическим инструментом, давая возможность в короткие сроки получить большое количество информации о состоянии дыхательной системы пациента, что облегчает постановку диагноза и начало соответствующей терапии. Использование данной методики также может значительно упростить ведение пациентов с хронической сердечной недостаточностью, позволяя объективно оценивать их волемический статус и корректировать медикаментозную (в особенности диуретическую) терапию на том этапе, когда клинические проявления декомпенсации сердечной недостаточности еще отсутствуют. Это позволит снизить количество госпитализаций таких пациентов и, помимо улучшения их состояния, способствовать сокращению затрат на стационарное лечение пациентов с хронической сердечной недостаточностью.

Ключевые слова: сердечная недостаточность, ультразвуковое исследование легких, декомпенсация сердечной недостаточности, венозный застой

Для цитирования: Жиров И. В., Терещенко С. Н., Павленко Т. А. Использование ультразвукового исследования легких для оценки декомпенсации сердечной недостаточности и необходимости коррекции диуретической терапии. Неотложная кардиология 2019; № 2:24—34.
doi: 10.25679/EMERGCARDIOLOGY.2019.23.97.003
Abstract. Despite many different new technologies and diagnostic tools, in medicine there is still a necessity for quick and proper evaluation of patients’ condition when they are admitted to hospital with worsening dyspnoea and in need of immediate differential diagnostic identification of possible reasons of that symptom. Especially, most difficult cases are that of patients who have heart failure and can have either cardiac or non-cardiac reasons of dyspnoea. X-ray is not always the best option for making diagnosis in non-stable patient, also in patients who lay on their back. Also, X-ray lung image does not always show the real-time situation. The whole echocardiography protocol (with measurements of tricuspid valve gradient, end diastolic pressure in left ventricle and inferior vena cava diameter) needs about 30 minutes to be made and could be less informative in obese, non-mobile patients and also in those who have bad ultrasound window. Auscultation and physical examination also aren’t always a clue for making diagnosis. That is why it is important to have a simple and fast diagnostic tool for making lung imaging. Lung ultrasound is a perfect tool which helps to get a lot of information about respiratory system in a short time and make it possible to find a problem and initiate therapy immediately. Also, lung ultrasound helps to estimate pulmonary congestion and to change diuretics dosage when there are still no clinical signs of congestive heart failure. That can help to decrease the number of hospitalizations, improve patient’s clinical profile and also decrease the price of treatment.

Keywords: heart failure, lung ultrasound, decompenated heart failure, pulmonary congestion

Описание методики

УЗИ легких является частью протокола ультразвукового (УЗ) исследования, используемого для диагностики пациентов в критических состояниях [8, 9]. Данная методика имеет определенные особенности и принципы.

Семь принципов УЗИ легких [6]:
1. УЗИ легких проводится на максимально простом и часто используемом оборудовании.
2. В грудной клетке в норме газ и жидкости расположены в различных областях и «смешиваются» лишь при патологии, формируя артефакты при УЗИ.
3. Легкие – достаточно объемный орган, для исследования которого можно использовать стандартизованные области сканирования [10].
4. Все УЗ признаки (профили) берут свое начало от линии плевры.
5. Статичные УЗ признаки в большинстве своем являются артефактами [11, 12].
6. Легкие – подвижный орган, и УЗ признаки, берущие свое начало от линии плевры, в большинстве своем динамичны.
7. Линия плевры так или иначе затрагивается практически при всех жизнеугрожающих состояниях, что объясняет высокий потенциал использования УЗИ легких за счет возможности ее визуализации.

В разное время существовало много различных протоколов УЗИ легких: от длинных протоколов с использованием 28 точек сканирования [13] и стандартных протоколов с использованием 8 точек, согласно действующим рекомендациям [14], до максимально простых протоколов с использованием 6 областей сканирования – так называемый протокол BLUE (Bedside Lung Ultrasound in Emergency) [15]. Использование последнего позволяет с точностью до 90,5% поставить верный диагноз. Протокол BLUE занимает менее 3 минут и позволяет диагностировать причину острой дыхательной недостаточности. Он включает в себя также исследование вен на ногах, необходимое в некоторых случаях. Свои специфические профили при исследовании имеются у отека легких, тромбозов в легочной артерии (ТЭЛА), пневмонии, хронической обструктивной болезни легких (ХОБЛ), бронхиальной астмы и пневмоторакса [16–21].

Следует уточнить, что при использовании УЗИ легких в понятие отека легких входит не только альвеолярный и интерстициальный отек, но и при-
Использование уЗи легких для оценки декомпенсации сердечной недостаточности

меняемое в русскоязычных странах понятие «венозный застой». В протоколе BLUE используются 3 стандартные точки: верхняя, нижняя и точка PLAPS [6]. Они располагаются на теле следующим образом: две ладони (соответствующие ладоням пациента, не включая большой палец) условно помещаются под ключицу пациента горизонтально, пальцы смотрят на грудину. Тогда верхняя точка соответствует середине верхней ладони, а нижняя — середине нижней. Точка PLAPS располагается на пересечении горизонтальной линии, проходящей через нижнюю точку, и задней подмышечной линии.

Для получения стандартного изображения УЗи датчик размещается вертикально, перпендикулярно ребрам [22]. Линия плевры вместе с ребрами формирует знак «летучей мыши» — объект, видимый в любых обстоятельствах (у возбужденных пациентов, пациентов с ожирением, при подкожной эмфиземе). Он обозначает париетальную плевру (рис. 1).

Нормальная поверхность легких представляет собой скользящее (двигающееся относительно грудной клетки) легкое и горизонтальные повторяющиеся линии плевры, которые называются линиями А. Линии А возникают из-за того, что УЗ луч не проходит через воздух и его отражение от плеврального листка формирует артефакты — «ложную плевру», видимую через равные интервалы. Таким образом, линии А обозначают газ — свободный или физиологический [6]. Скольжение легкого — это его движение вперед-назад относительно линии плевры. М-режим позволяет понять, что это движение относится к поверхностным тканям — знак «морского берега» (рис. 2). Скольжение легкого обозначает, что в видимую линию плевры, помимо париетальной, входит и висцеральная плевра.

Использование фильтров и режима тканевой гармоники при УЗИ может ухудшить видимость движения плевры, поэтому ряд исследователей рекомендует отключить все фильтры и пользоваться нативным УЗ изображением [6].

Интерстициальный синдром (уплотнение и утолщение интерстициального пространства легких), как правило, с трудом распознается с помощью обычных методов диагностики. При УЗИ легких состояние интерстициальной ткани обозначают линии В (рис. 3). Формирование этих линий объясняется отражением УЗ луча на границе раздела воздух/жидкость (особенно при отеке междольковых перегородок [23]) или воздух/плотная ткань. Линии В имеют 3 постоянных и 4 относительно постоянных критерия [24]. К постоянным относится то, что линии В —
это всегда артефакт, напоминающий хвост кометы, берущий свое начало от линии плевры и всегда движущийся вместе со скользящим легким. Относительно постоянные критерии: линии В почти всегда длинные, хорошо различимые, похожи на луч лазера, гиперэхогенные и «стирают» линии А. Данное определение позволяет отличить их от всех других артефактов, напоминающих хвосты комет.

До 2 линий В в одной области сканирования условно считается нормой. Три или более линий В между 2 ребрами носят название «легочных ракет». «Легочные ракеты» в 93% случаев коррелируют с наличием интерстициального синдрома, если для его подтверждения используется рентгенография грудной клетки, и в 100% случаев, если для этого используется КТ [23]. Наличие 3–4 линий В в одной области называют «септальными ракетами», это коррелирует с наличием линий Керли при рентгенографии грудной клетки [25]. В 2 раза большее количество линий называется «матовым стеклом», что коррелирует с симптомом «матового стекла» при рентгеновском исследовании [23]. В протоколе BLUE оцениваются только передне-латеральные линии В – задние интерстициальные изменения могут быть связаны с силой тяжести и положением пациента [6].

Диагностика пневмоторакса посредством УЗИ легких включает в себя три этапа. Отсутствие скольжения легкого при исследовании в передних точках практически всегда определяется у пациентов с пневмотораксом, лежащих на спине [26]. Этот признак обладает 95% чувствительностью и 100% отрицательной прогностической ценностью [27]. Таким образом, пневмоторакс достоверно исключается, если присутствует скольжение легкого [28–31]. Скольжение легкого может быть очень умеренным, вплоть до легочного пульса, что является эквивалентом скольжения легкого при поиске пневмоторакса. При наличии пневмоторакса линия плевры остается абсолютно неподвижной. В М-режиме появляется стандартный признак под над плевральной линией – изображение «штриховка» или «стратосферы» (из-за одышки возникают движения над линией плевры). Отсутствие скольжения легкого плюс отсутствие линий В в передних областях сканирования у лежащего на спине пациента в протоколе BLUE называется A-профилем.

Третий признак – «точка легкого» – является патогномоничным для пневмоторакса [32]. У пациентов с профилем A при исследовании в определенной точке внезапно вместе с дыханием появляются признаки легочной ткани: линии В, скольжение легкого. Это объясняется увеличением контакта коллабированного легкого с париетальной плеврой на вдохе. При сложном пневмотораксе с наличием париетальных сращений плевры «точка легкого» не формируется. «Точка легкого» показывает, что отсутствие скольжения легкого не связано с техническими проблемами и размерами фильтров при УЗИ. Чувствительность данного признака составляет 66%: полностью коллабированное легкое не может достигнуть стенки грудной клетки. «Точка легкого» косвенно указывает на объем пневмоторакса: умеренный, если она расположена спереди, массивный, если сзади или отсутствует [33]. Расположенная сзади «точка легкого» в 90% случаев указывает на необходимость дренирования; «точка легкого», расположенная спереди, – лишь в 8% случаев [31, 33, 34]. Опытному ультразвуковому диагносту нужно лишь несколько секунд, чтобы выявить скольжение легкого, линии В или их отсутствие, и менее 1 минуты для определения «точки легкого».

Для визуализации плеврального выпота УЗИ датчик необходимо поставить в точку PLAPS – наиболее кзади расположенную у лежащего пациента точку, где можно визуализировать любую свободно расположенную в плевральной полости жидкость, вне зависимости от ее количества [35]. Такой подход позволяет выделить 2 стандартных признака: признак синюсоиды и признак четырехугольника. Более глубоко расположенный «край» при изображении плеврального выпота будет представлен висцеральной плеврой и называться линией легкого, он и формирует четырехугольник. Линия легкого движется по направлению к линии плевры во время вдоха. В М-режиме это формирует признак синюсоиды и демонстрирует низкую вязкость плеврального выпота, что позволяет при необходимости дренировать жидкость точкой иглы. Обычно выпот представляет собой анизогенное содержимое, эхогенно, как правило, отмечается лишь в случаях эмпиемы и гидроторакса. Чувствительность УЗИ легких в отношении диагностики плеврального выпота составляет 93%, специфичность – 97% [36, 37].

Безопасное удаление выпота возможно даже у лежащих пациентов, находящихся на ИВЛ, у которых гидроторакс не выявляется на рентгенограмме [36]. Минимальное расстояние между листками плевры на выдохе, необходимое для безопасного удаления жидкости, составляет 15 мм [36]. Согласно рекомендациям Британского торакального сообщества, с 2010 г. настоятельно рекомендуется проводить плевральную пункцию под контролем УЗИ, так как это...
помогает сократить количество неудачных попыток и частоту осложнений, таких как пневмоторакс и кровотечение [38].

Консолидация легкого представляет собой изъянное накопление жидкости в легочной ткани, благодаря чему орган становится легко проницаем для УЗ луча. Консолидированная ткань в 98% случаев прилежит к стенке грудной клетки [39] и может находиться в любой области легкого, поэтому чувствительность УЗИ как метода зависит от размера области консолидации, ее расположения и времени, затраченного на ее поиск. В большинстве случаев (90%) консолидированная ткань видна из точки PLAPS [39].

У пациентов в критическом состоянии возможно различить, является ли консолидация транспласса́рной или нет. В случае нетрансплассарной консолидации граница между консолидированным и аэрированным легким неровная, формирует прерывистую линию – полную противоположность ровной линии легкого. В случае трансплассарной консолидации возникает признак ткани – легкое выглядит, как печень. Оба признака обладают 90% чувствительностью и 98% специфичностью [39]. Более сложные случаи обладают иными специфическими признаками [40]. К примеру, наличие воздушной бронхограммы [39] позволяет отличить пневмонию от ателектаза, при котором диагностика в палатах интенсивной терапии может быть невозможной из-за трансплассарной консолидации.

Пациенты в критическом состоянии могут сократить количество неудачных попыток и частоту осложнений, таких как пневмоторакс и кровотечение, используя быстрые стандартизированные протоколы, при которых будет возникать «легочный пульс» – сокращение сердца на видимой линии плевры [41].

Клиническое применение УЗИ легких у пациентов в критическом состоянии

Как УЗИ легких может стать рутинным инструментом диагностики в палатах интенсивной терапии? Достаточно легко, если использовать при исследовании быстрые стандартизованные протоколы, при которых во внимание отсутствие лучевой нагрузки.

Острая дыхательная недостаточность представляет собой жизниугрожающее состояние, причины которого иногда трудно быстро распознать. Использование протокола BLUE для диагностики острой дыхательной недостаточности позволяет определить наличие жидкости в интерстициальном пространстве легких [39]. Более сложные случаи обладают иными специфическими признаками [40]. К примеру, наличие воздушной бронхограммы [39] позволяет отличить пневмонию от ателектаза, при котором диагностика в палатах интенсивной терапии может быть невозможной из-за трансплассарной консолидации.

Пациенты в критическом состоянии могут сократить количество неудачных попыток и частоту осложнений, таких как пневмоторакс и кровотечение, используя быстрые стандартизированные протоколы, при которых будет возникать «легочный пульс» – сокращение сердца на видимой линии плевры [41].

Существующие ограничения и сложности в применении УЗИ легких

Тяжелая подкожная эмфизема и наличие повязок могут сильно затруднить визуализацию при УЗИ легких. Морбидное ожирение не всегда является ограничением при УЗИ легких, однако наличие значительного ожирения может сильно затруднить визуализацию при УЗИ легких.

Существующие ограничения и сложности в применении УЗИ легких

Тяжелая подкожная эмфизема и наличие повязок могут сильно затруднить визуализацию при УЗИ легких. Морбидное ожирение не всегда является ограничением при УЗИ легких, однако наличие значительного ожирения может сильно затруднить визуализацию при УЗИ легких.

Существующие ограничения и сложности в применении УЗИ легких

Тяжелая подкожная эмфизема и наличие повязок могут сильно затруднить визуализацию при УЗИ легких. Морбидное ожирение не всегда является ограничением при УЗИ легких, однако наличие значительного ожирения может сильно затруднить визуализацию при УЗИ легких.
признать, что в целом УЗИ легких при неотложных состояниях обладает большим диагностическим потенциалом и должно пополнить список рутинных диагностических исследований в палатах интенсивной терапии.

Применение УЗИ легких в кардиологии

УЗИ легких все чаще используют кардиологи и реаниматологи, в особенности работающие в кардиологических блоках интенсивного наблюдения, а также специалисты по лечению сердечной недостаточности. Всем кардиологическим пациентам так или иначе проводят ЭхоКГ, и проведение дополнительно УЗИ легких увеличивает время исследования не более чем на две-три минуты [5]. Оба метода требуют одинакового оборудования и используют расположенные рядом скины сканирования. Стандартный УЗ датчик с рабочими частотами до 5 МГц, используемый при ЭхоКГ, может с успехом применяться и для УЗИ легких, так как за счет своего не большого размера позволяет хорошо исследовать межреберные промежутки. Акустическое окно для исследования легких, как правило, всегда свободно, а качество изображения достаточно для адекватной интерпретации полученных данных [5]. Информация, полученная при помощи УЗИ легких о внесосудистом или респираторном дистресс-синдроме, пневмонии или, реже, ХОБЛ. Далее врач использует для постановки диагноза профили протокола BLUE: наличие скольжения легкого с наличием линий В на передней поверхности грудной клетки достаточно точно указывает на ОСН, отсутствие скольжения легкого высокоспецифично для пневмонии или респираторного дистресс-синдрома. Ввиду этого врача знает, что у пациента имеется ОСН, респираторный дистресс-синдром, пневмония или, реже, ХОБЛ. Для него и иначе должны быть интерпретированы в рамках предшествующих вмешательств [49]. Множественные линии В («легочные ракеты») необходимо не для диагностики нозологии, а для выявления интерстициального синдрома. Исходя из этого врач знает, что у пациента имеется ОСН, респираторный дистресс-синдром, пневмония или, реже, ХОБЛ. Далее врач использует для постановки диагноза профили протокола BLUE: наличие скольжения легкого с наличием линий В на передней поверхности грудной клетки достаточно точно указывает на ОСН, отсутствие скольжения легкого высокоспецифично для пневмонии или респираторного дистресс-синдрома. Ввиду этого врача знает, что у пациента имеется ОСН, респираторный дистресс-синдром, пневмония или, реже, ХОБЛ.

Венозный застой в легких, патофизиология

Последовательность событий, которые приводят к острой декомпенсации хронической сердечной недостаточности (XCH) по малому кругу кровообращения, может быть описана как «каскад жидкости» в легких [44]. Началом этого каскада является увеличение конечного диастолического давления (КДД) в ЛЖ и давления заклинивания в легочной артерии (ДЗЛА), что ведет к дисбалансу в уравнении Франка-Старлинга для альвеолярно-капиллярного барьера (ДЗЛА), что ведет к дисбалансу в уравнении Франка-Старлинга для альвеолярно-капиллярного барьера (ДЗЛА), что ведет к дисбалансу в уравнении Франка-Старлинга для альвеолярно-капиллярного барьера (ДЗЛА), что ведет к дисбалансу в уравнении Франка-Старлинга для альвеолярно-капиллярного барьера (ДЗЛА), что ведет к дисбалансу в уравнении Франка-Старлинга для альвеолярно-капиллярного барьера (ДЗЛА), что ведет к дисбалансу в уравнении Франка-Старлинга для альвеолярно-капиллярного барьера (ДЗЛА), что ведет к дисбалансу в уравнении Франка-Старлинга для альвеолярно-капиллярного барьера (ДЗЛА). Качественная оценка в случае УЗИ легких, с 85% чувствительностью и 92% специфичностью указывает на кардиогенную причину одышки [50], что сравнимо с показателями уровня натрийуретических пептидов. С помощью УЗИ легких повышает точность диагностики по сравнению с обычным осмотром, в отличие от сочетания рентгенографии грудной клетки с клиническим осмотром и определением уровня Nt-proBNP [51]. По данным метаанализа, проведенного в 2016 г. и охватившего 1914 пациентов, профиль В, выявленный при УЗИ легких, с 85% чувствительностью и 92% специфичностью указывает на кардиогенную причину одышки [50], что сравнимо с показателями уровня натрийуретических пептидов. С помощью УЗИ легких повышает точность диагностики по сравнению с обычным осмотром, в отличие от сочетания рентгенографии грудной клетки с клиническим осмотром и определением уровня Nt-proBNP [51]. По данным метаанализа, проведенного в 2016 г. и охватившего 1914 пациентов, профиль В, выявленный при УЗИ легких, с 85% чувствительностью и 92% специфичностью указывает на кардиогенную причину одышки [50], что сравнимо с показателями уровня натрийуретических пептидов. С помощью УЗИ легких повышает точность диагностики по сравнению с обычным осмотром, в отличие от сочетания рентгенографии грудной клетки с клиническим осмотром и определением уровня Nt-proBNP [51].

Венозный застой в легких является ключевым признаком начинающейся острой сердечной недостаточности (ОСН), однако клинические, аускультативные и радиологические признаки являются достаточно поздними, малочувствительными и неспецифичными.
УЗИ легких в существующих рекомендациях по кардиологии

Европейская ассоциация сердечно-сосудистой визуализации (European Association of Cardiovascular Imaging) в согласительном документе от 2010 г. указывает полуколичественную оценку внесосудистой жидкости в легких при помощи профиля В среди 8 ведущих показаний к использованию портативных УЗ аппаратов [54]. При экстренной ЭхоКГ отсутствие профиля В исключает кардиогенный отек легких с прогностической вероятностью, близкой к 100% [43, 55]. Рекомендации европейского общества кардиологов по сердечной недостаточности от 2016 г. советуют использовать УЗИ легких как один из диагностических тестов при сердечной недостаточности (класс IIb, уровень доказательности C) для подтверждения наличия венозного застоя и плеврального транссудата у пациентов с ОСН [56]. В 2015 г. Европейское общество кардиологов рекомендовало УЗИ легких как начальный диагностический тест для определения венозного застоя при подозрении на ОСН, так как «в достаточно опытных руках он может быть столь же или даже более информативен, как рентгенография грудной клетки, и, что важно, позволяет сэкономить время» [57].

В 2017 г. группа специалистов по ОСН Европейского общества кардиологов заключила, что трансторакальная ЭхоКГ и УЗИ легких могут помочь быстро оценить состояние пациентов с одышкой и артериальной гипотонией и, возможно, изменять порядок оценки и ведения пациентов в критических состояниях и при кардиогенном шоке [58].

УЗИ легких находит применение также при стресс-ЭхоКГ [59–61], обеспечивая информацию через иной патофизиологический механизм (альвеолярно-капиллярный барьер, а не критический стеноз коронарной артерии), через другие признаки (линии В вместо нарушения локальной сократимости) и в другой временной промежуток (после, а не на пике нагрузки). Как параметр, линии В проще выявить и измерить, и в отличие от нарушения локальной сократимости ЛЖ они поддаются количественной оценке. Накопление жидкости при физической нагрузке коррелирует с более тяжелыми формами сердечной недостаточности и худшим прогнозом при ХСН со сниженной ФВ, и может вызывать также у пациентов с сохраненной ФВ [59, 62]. Согласно рекомендациям Европейского общества по сердечно-сосудистой визуализации и Американского общества эхокардиографии от 2016 г., увеличение числа линий В по данным УЗИ легких во время стресс-ЭхоКГ является доказательством того, что симптом «одышки при физической нагрузке» связан с застоем в легких при сердечной недостаточности [63].

В настоящий момент планируется проведение крупного проспективного международного мультицентрового исследования Stress Echo 2020, которое будет направлено на изучение числа линий В у пациентов с известной или подозреваемой ХСН и ИБС. В исследование предполагается в течение 2020 г. включить 10 000 пациентов, на которых будет опробован новый стандарт двойного изображения — нарушение локальной сократимости и линии В [64].

Заключение

Используя в своей стандартной практике УЗИ легких, врач-кардиолог получает уникальную информацию о состоянии легочной ткани в режиме онлайн. УЗИ легких вскоре может изменить стандартный протокол ЭхоКГ, превратив его в сердечно-легочное УЗИ. УЗИ позволяет получать информацию о состоянии легких в кардиологическом блоке интенсивной терапии, при проведении ЭхоКГ, при проведении стресс-ЭхоКГ, а также в амбулаторных условиях. Использование УЗИ легких может уменьшить число исследований с лучевой нагрузкой, что особенно важно для кардиологических пациентов. «Влажное легкое», выявленное при УЗИ легких у стабильного пациента с ХСН, предсказывает декомпенсацию сердечной недостаточности и может помочь вовремя усилить диуретическую терапию, снижая число последующих госпитализаций. Необходимы дальнейшие рандомизированные исследования, направленные на оценку ценности УЗИ легких при ХСН или ОСН.

Сведения об авторах

Жиров Игорь Витальевич – д. м. н., профессор, в. н. с. отдела заболеваний миокарда и сердечной недостаточности Института клинической кардиологии им. А. Л. Мясникова ФГБУ «НМИЦ кардиологии» Минздрава России ORCID 0000-0002-4066-2661. Электронная почта: izhirov@mail.ru

Терещенко Сергей Николаевич – д. м. н., профессор, руководитель отдела заболеваний миокарда и сердечной недостаточности, заместитель генерального директора по научной работе Института клинической кардиологии им. А. Л. Мясникова ФГБУ «НМИЦ кардиологии» Минздрава России ORCID 0000-0001-9234-6129. Электронная почта: stereschenko@yandex.ru

Павленко Татьяна Алексеевна – врач 8-го кардиологического отделения ФГБУ «НМИЦ кардиологии» Минздрава России, Москва, ул. 3-я Черепковская, 15А, 121552 ORCID 0000-0001-7586-248X. Электронная почта: pavlenko1307@mail.ru

Литература

52. Ponikowski P, Voors AA, Anker SD et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology. Eur J Heart Fail 2016; 18:891–975.

Конфликт интересов. Все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия в данной статье.

Disclosures. All authors have not disclosed potential conflict of interest regarding the content of this paper.
Всероссийские клинические рекомендации по контролю над риском внезапной остановки сердца и внезапной сердечной смерти, профилактике и оказанию первой помощи (часть 8)
Комитет экспертов: Е. В. Шляхто, А. Ш. Ревишвили, С. А. Бойцов, О. Л. Барбара, С. П. Голицын, Д. Ф. Егоров, Е. В. Заклязьминская, В. А. Кузнецов, Д. С. Лебедев, Л. М. Макаров, В. В. Мороз, Е. А. Покушалов, С. В. Попов, М. А. Школьникова, Ю. В. Шубик, С. М. Яшин

Ключевые слова: внезапная смерть, внезапная сердечная смерть, врожденный порок сердца, дефибриллятор, рекомендации, сердечная недостаточность, имплантируемый кардиовертер-дефибриллятор, инфаркт миокарда, острый коронарный синдром, сердечная ресинхронизирующая терапия, кардиомиопатия, реанимация, стабильная ишемическая болезнь сердца, внезапная сердечная смерть, тахикардия, поражение клапанов сердца, желудочковая аритмия, фибриляция желудочков. Неотложная кардиология 2019; № 1:24—37

National clinical guidelines for the control of the risk of sudden cardiac arrest and sudden cardiac death, their prevention and first aid (part 8)

Keywords: sudden death, sudden cardiac death, congenital heart disease, defibrillator, clinical guideline, heart failure, implanted cardioverter defibrillator, myocardial infarction, acute coronary syndrome, cardiac resynchronization therapy, cardiomyopathy, resuscitation, stable ischemic heart disease, sudden cardiac death, tachycardia, cardiac valve disease, ventricular arrhythmia, ventricular fibrillation. Emergency Cardiology 2019; № 1:24—37

Список сокращений

АВ — Атриовентрикулярный (предсердно-желудочковый)
АКПЖ — Аритмогенная кардиомиопатия правого желудочка
АМР — Антагонист минералокортикоидных рецепторов
АФП — Ангиотензинпревращающий фермент
БРА — Блокатор рецепторов ангиотензина II
в/в — Внутривенно
ВАС — Внезапная аритмическая смерть
ВВСС — Внезапная внегоспитальная сердечная смерть
ВНОА — Всероссийское научное общество аритмологов
ВНСН — Внезапная необъяснимая смерть новорожденного
ВНСЭ — Внезапная необъяснимая смерть при эпилепсии
ВОС — Внезапная остановка сердца
ВПС — Врожденный порок сердца
ВСС — Внезапная сердечная смерть
ВТ — Выходной тракт
ВТЛЖ — Выходной тракт левого желудочка
ВТРЖ — Выходной тракт правого желудочка
ГКМП — Гипертрофическая кардиомиопатия
ДВЖТ — Tdp — Двунаправленная веретенообразная желудочковая тахикардия — Torsade de pointes — полиморфная желудочковая тахикардия типа „пируэт“
ДИ — Доверительный интервал
ДКМП — Дилатационная кардиомиопатия
ЖА — Желудочковая аритмия
ЖГТ — Желудочковая тахикардия
ЖЭ — Желудочковая экстраксиола
ИБС — Ишемическая болезнь сердца
ИКД — Имплантируемый кардиовертер-дефибриллятор
КПЖТ — Катехоламинергическая полиморфная желудочковая тахикардия
КСР — Комитет по составлению рекомендаций
Приложение. Реанимационные мероприятия при внезапной остановке кровообращения [847]

Остановка кровообращения, сердечно-легочная и церебральная реанимация.

Причины остановки кровообращения

Первичная (кардиальная) остановка кровообращения — развивается вследствие электрической нестабильности миокарда (острая ишемия, инфаркт миокарда, кардиомиопатии, врожденные и приобретенные нарушения проводимости, стеноз аорты, расслоение аневризмы аорты, миокардиты, поражение электрическим током).

Вторичная (экстрракардиальная) остановка кровообращения — развивается вследствие экстракардиальных причин (тяжелая дыхательная, циркуляторная, гемическая или тканевая гипоксия вследствие асфиксии, утопления, массивной кровопотери; гипогликемия, гипотермия, тяжелый ацидоз, гипо-/гиперкалиемия, метаболические причины, гипопротеинемия, тромбоз (тромбоэмболия легочной артерии), тампонада сердца, напряженный пневмоторакс, токсина).

При внезапной остановке кровообращения наиболее принципиальными являются четыре мероприятия, обеспечивающие повышение выживаемости больных до выписки из стационара:

1. Ранняя диагностика и вызов помощи.
2. Немедленное начало компрессий грудной клетки.
3. Немедленная дефibrилиация.
4. Совокупность мероприятий в постреанимационном периоде.

Раннее начало компрессий грудной клетки увеличивает выживаемость при остановке кровообращения в 2—3 раза. Компрессии грудной клетки и дефibrилиация, выполненные в течение 3—5 мин от остановки сердца, обеспечивают выживаемость 49—75%. Каждая минута промедления с дефibrилиацией уменьшает вероятность выживания на 10—15%. Ранняя дефibrилиация возможна, если окажется доступным автоматический наружный...
дефибриллятор (АНД), расположенный в общественном месте.

Состояния, предшествующие остановке кровообращения и дыхания
Практически всегда регистрируют fazу предостановки, или угрожающего состояния, предвещающего остановку сердца: обструкция дыхательных путей, остановка дыхания, частота дыхания менее 6 или более 36 в минуту, ЧСС менее 40 или более 140 в минуту, снижение систолического АД (менее 80 мм рт. ст.), нарушение сознания и др.

Алгоритм базовых реанимационных мероприятий

1. **Убедиться в безопасности** для себя, больного и окружающих; устранить возможные риски.
2. **Проверить реакцию**: аккуратно встряхнуть больного за плечи и громко спросить «Что с вами?».
3. **Если больной не реагирует** — повернуть на спину и открыть дыхательные пути путем запрокидывания головы и подтягивания подбородка: рукой нужно надавить на лоб, а другой рукой подтянуть подбородок. Поддерживая дыхательные пути открытыми, необходимо увидеть, услышать и почувствовать нормальное дыхание, наблюдая за движениями грудной клетки, прислушиваясь к шуму дыхания и ощущая движение воздуха на своей щеке. Исследование продолжать не более 10 с.
4. **Принять решение**: дыхание нормальное, ненормальное или отсутствует. Необходимо помнить о том, что у 40% пострадавших в первые минуты после остановки кровообращения может развиваться агональное дыхание (редкие, короткие, глубокие судорожные дыхательные движения). Агональное дыхание может возникнуть во время проведения компрессий грудной клетки как признак улучшения перфузии головного мозга, но не признак восстановления эффективного кровообращения. Если возникают сомнения в характере дыхания — вести себя так, как будто дыхание агональное.
5. **Если у пострадавшего агональное дыхание или оно отсутствует** — попросить свидетелей остановки вызвать помощь и принести АНД (или сделать это самостоятельно); начать компрессии грудной клетки:
 • встать на колени сбоку от больного;
 • расположить основание одной ладони на центре грудной клетки больного;
 • расположить основание другой ладони поверх первой ладони;
 • сомкнуть пальцы рук в замок и удостовериться, что вы не оказываете давление на ребра; выгнуть руки в локтевых суставах; не оказывать давление на верхнюю часть живота или нижнюю часть грудины;
 • расположить тело вертикально над грудной клеткой больного и надавить на глубину как минимум на 5 см, но не более 6 см;
 • обеспечивать полную декомпрессию грудной клетки без потери контакта рук с грудной после каждой компRESSIONС;
 • продолжать компрессии грудной клетки с частотой от 100 до 120 мин⁻¹;
• компрессии и декомпрессии грудной клетки должны занимать равное время;
• компрессии грудной клетки следует проводить только на жесткой поверхности.
• Компрессии грудной клетки необходимо сочетать с искусственными вдохами в соотношении 30:2. При этом важно избегать форсированных вдохов и гипервентиляции. Продолжительность двух искусственных вдохов — не более 10 с.
• Компрессии грудной клетки должны выполняться с минимальными перерывами.
• Как только доставлен АНД: включить АНД и следовать его голосовому и визуальному командам; наложить электроды на обнаженную грудную клетку больного; убедиться, что во время анализа ритма никто не прикасается к посредователю — это может нарушить алгоритм анализа ритма; АНД проводит автоматизированный анализ ритма сердца. Если дефибрилляция показана (ФЖ или тахикардия с широкими комплексами), убедиться, что никто не прикасается к посредователю, и нажать на кнопку; сразу же после нанесения разряда продолжить сердечно-легочную реанимацию в соотношении 30:2. При наличии тахикардии с широкими комплексами, убедиться, что никто не прикасается к посредователю, и нажать на кнопку; сразу же после нанесения разряда продолжить сердечно-легочную реанимацию в соотношении 30:2. При наличии тахикардии с широкими комплексами, убедиться, что никто не прикасается к посредователю, и нажать на кнопку; сразу же после нанесения разряда продолжить сердечно-легочную реанимацию в соотношении 30:2.
• Всегда помнить о безопасности реаниматора и окружающих при проведении дефибрилляции!
• Всегда наносить только один разряд дефибриллятора, следующий разряд нанести при наличии соответствующих показаний после проведения 2 мин. Т. е. сразу же после нанесения разряда, не теряя времени на проверку ритма, немедленно возобновить СЛР 30:2 в течение 2 мин — даже если первый разряд дефибриллятора восстановил нормальный ритм сердца, начальные сокращения сердца слишком слабы и редкие, и требуется поддержка их извне. Качественные компрессии грудной клетки могут улучшить амплитуду и частоту ФЖ и повысить вероятность успешной дефибрилляции с переводом ритма в гемодинамически эффективный. Любые перерывы в компрессиях грудной клетки должны планироваться лидером реанимационной бригады заранее. Человека, выполняющего компрессии грудной клетки, необходимо менять каждые 2 мин.
• После 2 мин СЛР остановиться и проверить ритм по монитору, затрачивая на это минимальное время.
• Разряд № 2. Если снова по данным кардиомонитора выявляется ФЖ или тахикардия с широкими комплексами — нанести второй разряд (той же амплитуды и частоты, увидев ФЖ на мониторе — подключить его к больному).
• При этом важно избегать форсированных вдохов — не более 10 с. При выполнении СЛР двумя врачами один выполняет компрессии грудной клетки, другой — искусственную вентиляцию. Первый реаниматор, выполняющий компрессии грудной клетки, громко считает количество компрессий и отдает команду второму реаниматору на выполнение двух вдохов. Врачи меняются местами каждые 2 мин. Если доступен АНД, то один врач выполняет СЛР 30:2, второй работает с АНД. Электроды АНД необходимо накладывать на грудную клетку, не прерывая компрессии грудной клетки.

Расширенные реанимационные мероприятия
Начальная часть алгоритма расширенных реанимационных мероприятий аналогична алгоритму базовой реанимации:
• диагностика остановки кровообращения (нет сознания, нет дыхания / агональное дыхание, нет пульса на магистральной артерии);
• вызов помощи (бригада реаниматологов);
• начало компрессий грудной клетки, продолжение СЛР 30:2 до прибытия специалистов. Если медицинский работник один, то он неизбежно должен покинуть посредователя на время для того, чтобы принести оборудование и дефибриллятор; если работников несколько, то необходимо сразу же выделить лидера, который будет руководить работой команды.
• Алгоритм действий в случае определения ритма, подлежащего дефибрилляции (ФЖ или тахикардия с широкими комплексами):
 • Начать СЛР в соотношении 30:2. При наличии кардиомонитора — подключить его к больному.
 • Если остановка кровообращения произошла в ситуации, когда больной подключен к монитору, но рядом нет дефибриллятора, то реанимационные мероприятия можно начать с нанесения одного прекардиального удара: нанести отрывистый удар по нижней части грудины с высоты 20 см локтем вплоть сжатого кулака. Других показаний для применения прекардиального удара не существует!
 • Как только появится дефибриллятор — наложить электроды на грудь посредователя. Начать анализ ритма сердца. Во время анализа ритма прекращать компрессии грудной клетки.
 • Разряд № 1. Если по данным мониторинга подтверждается наличие ФЖ или тахикардии с широкими комплексами — нанести один разряд (360 Дж — при монофазном импульсе, 150—200 Дж — при бифазном), минимизируя паузы между прекращением компрессий грудной клетки и нанесением разряда. Минимизация пауз достигается тем, что сразу после анализа ритма, во время зарядки дефибриллятора продолжают компрессии грудной клетки и убирают руки только в момент нанесения разряда. Пауза между прекращением компрессии грудной клетки и нанесением разряда критична и должна составлять не более 5 с.
 • Всегда помнить о безопасности реаниматора и окружающих при проведении дефибрилляции!
 • Всегда наносить только один разряд дефибриллятора, следующий разряд нанести при наличии соответствующих показаний после проведения 2 мин. Т. е. сразу же после нанесения разряда, не теряя времени на проверку ритма, немедленно возобновить СЛР 30:2 в течение 2 мин — даже если первый разряд дефибриллятора восстановил нормальный ритм сердца, начальные сокращения сердца слишком слабые и редкие, и требуется поддержка их извне. Качественные компрессии грудной клетки могут улучшить амплитуду и частоту ФЖ и повысить вероятность успешной дефибрилляции с переводом ритма в гемодинамически эффективный. Любые перерывы в компрессиях грудной клетки должны планироваться лидером реанимационной бригады заранее. Человека, выполняющего компрессии грудной клетки, необходимо менять каждые 2 мин.
 • После 2 мин СЛР остановиться и проверить ритм по монитору, затрачивая на это минимальное время.
 • Разряд № 2. Если снова по данным кардиомонитора выявляется ФЖ или тахикардия с широкими комплексами — нанести второй разряд (той же амплитуды и частоты, увидев ФЖ на мониторе — подключить его к больному).
Нет сознания
Нет нормального дыхания?

- Вызвать экстренную службу

Сердечно-легочная реанимация (СЛР) 30:2

Оценить сердечный ритм

- Ритм, подлежащий дефибрилляции (фibrillation желудочков/желудочковая тахикардия без пульса)
 - 1 разряд
 - Минимизировать перерывы в действиях
 - Немедленно продолжить СЛР в течение 2 мин
 - Минимизировать перерывы в действиях

- Ритм, не подлежащий дефибрилляции (электромеханическая диссоциация/асистоля)
 - Восстановления спонтанного кровообращения
 - НЕОТЛОЖНЫЕ МЕРОПРИЯТИЯ В ПОСТРЕАНИМАЦИОННОМ ПЕРИОДЕ
 - Использовать алгоритм ABCDE
 - Достичь целевой SaO2: 94—98%
 - Достичь нормального PaCO2
 - Зарегистрировать ЭКГ в 12 отведениях
 - Лечить причину остановки кровообращения
 - Обеспечить контроль температуры тела
 - Немедленно продолжить СЛР в течение 2 мин
 - Минимизировать перерывы в действиях

ВО ВРЕМЯ СЛР
- Обеспечить эффективные компрессии грудной клетки
- Минимизировать перерывы в действиях
- Начать кислородотерапию
- Использовать капнографию
- После обеспечения проходимости дыхательных путей специализированными устройствами — проводить непрерывные компрессии грудной клетки
- Обеспечить сосудистый доступ (внутривенный или внутритканый)
- Вводить адреналин каждые 3–5 мин
- Ввести амиодарон после третьего разряда дефибриллятора

ЛЕЧИТЬ ПОТЕНЦИАЛЬНО ОБРАТИМЫЕ ПРИЧИНЫ ОСТАНОВКИ КРОВООБРАЩЕНИЯ
- Гипоксия
- Гиповолемия
- Гипо / гиперкапния / метаболические причины
- Гипотермия / гипертермия
- Тромбоз коронарной или легочной артерии
- Напряженный пневмоторакс
- Тампонада сердца
- Токсины (отравления)

РАССМОТРЕТЬ ВОЗМОЖНУЮ ПРИЗВУКУ ПРИМЕНЕНИЯ
- Ультразвуковых методов
- Устройств для механической компрессии грудной клетки для облегчения транспортировки и оказания помощи
- Коронарной ангиографии и чрескожного коронарного вмешательства
- Эхокардиографий методов жизнеобеспечения
мощности или больше, 150—360 Дж для бифазного разряда) и немедленно возобновить СЛР 30:2 в течение 2 мин.
• После 2 мин СЛР остановиться и проверить ритм по монитору, затрачивая на это минимальное время.
• Разряд № 3. Если снова выявляется ФЖ или тахикардия с широкими комплексами — нанести третий разряд (той же мощности или больше) и без пауз продолжить СЛР 30:2 в течение 2 мин.
• После нанесения третьего разряда возможно введение лекарств (адреналин 1 мг, амиодарон 300 мг, внутривенно или внутривенно) параллельно с проведением СЛР. Считается, что если восстановление кровообращения не было достигнуто после данного третьего разряда, адреналин может улучшить кровоток миокарда и повысить шансы на успех дефибрилляции при следующем разряде. Введение лекарств не должно прерывать СЛР и задерживать такие вмешательства, как дефибрилляция.
• Далее — оценивать ритм сердца по кардиомонитору каждые 2 мин. При сохранении ФЖ или тахикардии с широкими комплексами — продолжать по описанному алгоритму, вводить адреналин по 1 мг в/в, внутривенно или внутривенно каждые 3—5 мин до восстановления эффективного кровообращения. После пятого разряда дефибриллятора необходимо однократно ввести 150 мг амиодарона внутривенно или внутривенно.
• При развитии асистолии или БЭА — см. Алгоритм действий в случае определения ритма, не поддающегося дефибрилляции.
• При выявлении по монитору организованного ритма сердца или появлении признаков восстановления эффективного кровообращения (целенаправленные движения, нормальное дыхание, кашель; повышение etCO 2 по монитору) необходимо пальпировать пульс на магистральной артерии, потратив на это не более 10 с. При наличии пульса — начать лечение по алгоритму постреанимационного периода. При отсутствии пульса (или сомнении в его наличии) — продолжить СЛР 30:2.

Искусственная вентиляция легких
Во время СЛР ИВЛ следует проводить с дыхательным объемом 6—8 мл/кг (или до видимого подъема грудной клетки большого), частотой дыханий 10—12 мин⁻¹, FiO 2 100%. Гипервентиляция ухудшает исходы лечения. После интубации трахеи (или установки надгортанного воздуховода) нужно по возможности проводить непрерывные компрессии грудной клетки и непрерывную ИВЛ.

Сосудистый доступ и лекарственные препараты
Рекомендованные пути введения лекарственных препаратов при СЛР: внутривенный или внутривенно.
• После 2 мин СЛР проверить ритм по кардиомонитору, затрачивая на это минимальное время.
• При выявлении асистолии — продолжить СЛР, вводить адреналин 1 мг каждые 3—5 мин внутривенно или внутривенно. Если в процессе СЛР появились признаки восстановления кровообращения, введение адреналина следует приостановить и продолжать СЛР до окончания двухминутного цикла.
• При выявлении по монитору организованного ритма сердца или появлении признаков восстановления эффективного кровообращения (целенаправленные движения, нормальное дыхание, кашель; повышение etCO 2 по монитору) необходи́мо пальпировать пульс на магистральной артерии, потратив на это не более 10 с. При наличии пульса — начать лечение по алгоритму постреанимационного периода. При отсутствии пульса (или сомнении в его наличии) — продолжить СЛР 30:2.

Лидокаин — обладает свойствами антиаритмического препарата I класса. Показания для введения — те же, что для амиодарона. Используется при отсутствии последнего (1 мг/кг, но не более 3 мг/кг в течение 1 часа; инъекция 1—4 мг/70 кг/мин), но не является препаратом выбора. Эффективность лидо-
каина снижается при гипокалиемии и гипомагниемии. Не вводить лидокаин, если до этого использовался амиодарон.

Магния сульфат — показан при желудочковых и наджелудочковых аритмиях, развивающихся на фоне гипомагниемии; аритмии по типу torsades de pointes, интоксикациях дигоксином. Начальная доза 2 г (8 ммоль) за 1—2 мин, повторные дозы — через 10—15 мин (отечественный препарат — 1,25 г в 5 мл раствора).

Кальция хлорид — показан при электромеханической диссоциации на фоне гиперкалиемии, гипокальциемии, передозировки блокаторов кальциевых каналов. Начальная доза — 10 мл 10% раствора (6,8 ммоль кальция). При внезапной остановке кровообращения возможна быстрая инъекция, при лечении аритмий — только медленная.

Бикарбонат натрия — назначается во всех случаях длительных реанимационных мероприятий (более 30 мин) для коррекции ацидоза, на фоне которого будут неэффективны другие лекарственные препараты. Вводят 50—100 мл 8,4% раствора (1 ммоль/кг, не более 0,5 ммоль/кг каждые 10 мин) под контролем кислотно-основного состояния крови. Вводят в/в половину расчетной дозы, затем, при необходимости, вторую половину, добиваясь уменьшения дефицита оснований до 5 ммоль/л.

Внутривенная инфузия — остановка кровообращения практически всегда сопровождается абсолютной или относительной гиповолемией, поэтому показана внутривенная инфузия кристаллоидов. Использование растворов глюкозы ухудшает неврологические исходы лечения.

Фибринолитические препараты применяют при остановке кровообращения, вызванной тромбозом лерогичной артерии. Уже проводимая СЛР не является противопоказанием для фибринолиза в данной ситуации. После введения фибринолитика СЛР следует продолжать в течение 60—90 мин.

Если ФЖ или тахикардия с широкими комплексами развилась в присутствии медицинского персонала, в условиях мониторинга и доступен дефибриллятор, то необходимо срочно нанести три последовательных разряда дефибриллятора, быстро оценив после каждого разряда ритм по кардиомонитору. Если по кардиомонитору зарегистрирован организованный ритм (т. е. не ФЖ или асилиолия) — проверить пульс на сонной артерии. Если неэффективны три последовательных разряда — начать СЛР 30:2.

Персистирующая ФЖ/тахикардия с широкими комплексами является показанием к чрескожному коронарному вмешательству для устранения причины аритмии, т. е. тромбоза коронарной артерии. В данной ситуации больному выполняют чрескожное коронарное вмешательство при продолжающейся СЛР. В таком случае следует рассмотреть возможность использования устройств для механической СЛР на время транспортировки больного и проведения чрескожного коронарного вмешательства.

Устройства для механической компрессии грудной клетки
Применение подобных устройств при СЛР возможно при проведении СЛР во время транспортировки больных, при длительных реанимационных мероприятиях (например, при гипотермии), при проведении СЛР во время чрескожного коронарного вмешательства.

Мониторинг во время проведения расширенных реанимационных мероприятий
- Клинические признаки: попытки вдоха, движене и открывание глаз, наличие сердечного ритма и пульса на центральной артерии, реакция зрачков.
- Устройства с обратной связью. Подобные устройства могут быть портативными или интегрированными в дефибриллятор. Дают звуковые или визуальные подсказки по глубине и частоте компрессий, степени декомпенсации, задают звуковой метроном частоты компрессий.
- Инвазивный мониторинг гемодинамики. Во время СЛР следует считать оптимальными компрессии грудной клетки, обеспечивающие диастолическое давление в аорте выше 25 мм рт. ст.
- Капнография при проведении СЛР может быть информативна в следующих ситуациях: подтверждение правильного положения интубационной трубки, мониторинг частоты дыхания во время СЛР и предупреждение гипервентиляции, мониторинг качества компрессии грудной клетки.
- Ультразвуковое исследование позволяет диагностировать обратимые причины остановки кровообращения (гиповолемия, тампонада сердца, напряженный пневмоторакс и т. д.).
- Церебральная оксиметрия позволяет неинвазивно оценивать региональную сатурацию гемоглобина в сосудах головного мозга (rSO 2).
- Забор крови для оценки нарушений кислотно-основного состояния, выявления метаболических нарушений, гипо-гиперкалиемии, интоксикации и др.

Осложнения СЛР: раздувание желудка, разрыв легкого с развитием пневмоторакса, переломы ребер, грудины, разрыв печени, эмболические осложнения.

Лечение жизнеугрожающих тахи- и брадиаритмий
Корректное выявление и лечение аритмий у больных в критических состояниях может предупредить развитие остановки кровообращения или ее рецидив после успешной первичной реанимации. Оценка
аритмий сводится к двум основным факторам: оценить состояние пациента (стабильное/нестабильное) и природу аритмий.

Наличие или отсутствие неблагоприятных признаков и симптомов будет определять алгоритм лечения для большинства аритмий.
1. Бледные кожные покровы, холодный липкий пот, нарушения сознания, артериальная гипотония (sistолическое АД менее 90 мм рт. ст.).
2. Обморок — потеря сознания вследствие снижения мозгового кровотока.
3. Сердечная недостаточность. В острых ситуациях она может манифестировать отеком легких и/или повышением давления в яремных венах, увеличением печени.
4. Ишемия миокарда.

Выявлять признаки осложнений:
1. Шок.
2. Обморок.
3. Ишемия миокарда.
4. Сердечная недостаточность.

● Оценить с использованием алгоритма ABCDE
● Обеспечить кислородотерапию и внутривенный доступ
● Мониторинг ЭКГ, артериального давления, SpO2, записать ЭКГ в 12 отведениях
● Выявлять и корректировать обратимые причины (например, электролитные нарушения)

1. Атропин 500 мкг в/в
2. Удовлетворительная реакция?

● Промежуточные мероприятия:
 ● Атропин 500 мкг в/в, повторить до максимальной дозы 3 мг
 ● Изопреналин (изопретеренол, изадрин), 5 мкг/мин
 ● Адреналин, 2—10 мкг/мин
 ● Альтернативные препараты*

или

● Чрескожная стимуляция

Наблюдать

• Риск асистолии?
 • Асистолия в недавнем прошлом
 • АВ-блокада тип II Мобитц
 • Полная поперечная блокада с широкими комплексами QRS
 • Асистолия желудочков более 3 с

* Альтернативные препараты:
 ● Аминофилин (зуфилин)
 ● Добутамин
 ● Глюкагон (при передозировке бета-блокаторов или блокаторов кальциевых каналов)
 ● Гликопирролат может быть использован вместо атропина (недоступен в РФ)
После определения ритма сердца и наличия/отсутствия неблагоприятных признаков возможны следующие варианты немедленного лечения аритмии:
1. Электрическое (кардиоверсия, кардиостимуляция).
2. Медикаментозное (антиаритмические и другие препараты).

* Электрическая кардиоверсия всегда проводится на фоне анестезии или седации.
Принципы ведения больных в послереанимационном периоде

Дыхательные пути и дыхание
Предотвратить падение SpO2 ниже 94–98%
Установить соответствующую воздуховодное устройство
Волнообразная капнография
Инфузия (кристаллоиды) для восстановления нормоволемии
Искусственная вентиляция легких до достижения нормокапнии

Кровообращение
ЭКГ в 12 отведениях
Установить надежный венозный доступ
Целевое систолическое АД > 100 мм рт. ст.
Инфузия (кристилоиды) для восстановления нормоволемии
Интрареальная мониторинг АД
Подумать о вазопрессорной/инотропной поддержке АД

Контроль температуры
Целевой диапазон температуры тела 32—36 °C
Седация; не допускать оззда

Есть вероятность кардиальной причины?

Нет

Да

Подъем ST на ЭКГ в 12 отведениях?

Нет

Да

Коронарная ангиография ± ЧКВ

Подумать о коронарной ангиографии ± ЧКВ

Подумать о КТ головного мозга и/или КТЛП

Лечить некардиальную причину остановки сердца

Перевести в отделение реанимации

Лечение в отделении реанимации
Поддержание целевой температуры тела 32—36 °C × 24 часов; не допускать лихорадки по крайней мере 72 часа
Поддерживать нормоксию и нормокапнию; безопасная искусственная вентиляция легких
Оптимизировать гемодинамику (САД, лактат, ScvO2, диурез)
Эхокардиография
Поддерживать нормолипидемию
Диагностировать/лечить судороги (ЭЭГ, седация, антивазэлизанты)
Отложить прогнозировать менее чем на 72 часа

САД — систолическое артериальное давление, **КТЛА** — компьютерно-томографическая легочная ангиография,

ЧКВ — чрескожное коронарное вмешательство, **ЭЭГ** — электроэнцефалография.
Реанимационные мероприятия в педиатрии

- Базовую реанимацию необходимо начинать с пяти искусственных вдохов.
- Если спасатель один, он должен провести реанимацию в течение 1 минуты или 5 циклов СЛР прежде, чем отправиться за помощью. Для минимизации пауз в СЛР, отправляясь за помощью, маленького ребенка можно нести с собой на руках.
- У детей особенно важно не давить на мягкие ткани в области подбородка — это может вызвать обструкцию дыхательных путей.
- У младенцев в положении на спине голова обычно согнута, что может потребовать некоторого разгибания и подъема подбородка. При проведении искусственного дыхания младенцам может потребоваться накрыть своим ртом одновременно рот и нос младенца. У детей старше года искусственное дыхание проводится по обычной методике.
- После проведения пяти начальных искусственных вдохов необходимо проверить наличие признаков восстановления спонтанного кровообращения (движения, кашель, нормальное дыхание), пульса (у младенцев — на плечевой артерии, у детей старше — на сонной), потратив на это не более 10 с. При выявлении признаков восстановления эффективного кровообращения следует при необходимости продолжать искусственное дыхание. При отсутствии признаков эффективного кровообращения — начать компрессии грудной клетки.
- Компрессии грудной клетки нужно осуществлять на нижнюю часть грудины, на 1/3 передне-заднего диаметра грудной клетки ребенка.
- У младенцев компрессии грудной клетки выполняют двумя пальцами при наличии одного спасателя и по циркулярной методике при наличии двух спасателей. Для этого два больших пальца нужно приложить к нижней половине грудины, направив кончики пальцев в сторону головы ребенка. Кистями обеих рук нужно обхватить нижнюю часть грудной клетки ребенка. Пальцы должны поддерживать его спину. При любой из этих методик следует прижимать грудину по меньшей мере на одну треть передне-заднего размера грудной клетки или на 4 см.

РРМ — расширенные реанимационные мероприятия

<table>
<thead>
<tr>
<th>Позыв на помощь</th>
</tr>
</thead>
<tbody>
<tr>
<td>Открыть дыхательные пути</td>
</tr>
<tr>
<td>Не дышит нормально?</td>
</tr>
<tr>
<td>5 искусственных вдохов</td>
</tr>
<tr>
<td>Нет признаков жизни?</td>
</tr>
<tr>
<td>15 компрессий грудной клетки</td>
</tr>
<tr>
<td>2 искусственных вдоха 15 компрессий</td>
</tr>
<tr>
<td>Вызвать бригаду остановки сердца или педиатрическую бригаду РРМ после 1 минуты СЛР</td>
</tr>
</tbody>
</table>

PPM — расширенные реанимационные мероприятия
ВСероССийСкие клиничеСкие рекоМендации По контролЮ над риСкоМ ВнеЗаПной оСтаноВки Сердца и ВСС

Нет реакции (нет сознания)?

Вызвать экстренную службу. Если один врач — вначале провести 1 мин СЛР.

Начать СЛР: 5 искусственных вдохов, затем 15:2 Наложить электроды дефibrillatorа/монитора Минимизировать перерывы в действиях.

Оценить сердечный ритм

Ритм, поддающийся дефибрилляции (фибрилляция желудочков / желудочковая тахикардия без пульса)

1 разряд 4 Дж/кг

Восстановления спонтанного кровообращения

НЕОТЛОЖНЫЕ МЕРОПРИЯТИЯ В ПОСТРЕАНИМАЦИОННОМ ПЕРИОДЕ

• Использовать алгоритм ABCDE
• Обеспечить контролируемую оксигенацию и вентиляцию
• Выполнить обследование
• Лечить причину остановки кровообращения
• Обеспечить контроль температуры тела

Немедленно продолжить СЛР в течение 2 мин Минимизировать перерывы в действиях

Немедленно продолжить СЛР в течение 2 мин Минимизировать перерывы в действиях

Ритм, не поддающийся дефибрилляции (электромеханическая диссоциация / асинхрония)

ВО ВРЕМЯ СЛР

• Обеспечить эффективную СЛР: частота, глубина, расправление грудной клетки
• Планировать действия до прерывания СЛР
• Обеспечить кислородотерапию
• Обеспечить сосудистый доступ (внутривенный или внутримышечный)
• Вводить адреналин каждые 3—5 мин
• Рассмотреть возможность использовать специализированные устройства для обеспечения проходимости дыхательных путей и капнографии
• При обеспечении проходимости дыхательных путей специализированными устройствами — проводить непрерывные компрессии грудной клетки
• Лечить потенциально обратимые причины остановки кровообращения

ПОТЕНЦИАЛЬНО ОБРАТИМЫЕ ПРИЧИНЫ ОСТАНОВКИ КРОВООБРАЩЕНИЯ

• Гипоксия
• Гиповolemия
• Гипо/гиперкалиемия, метаболические причины
• Гипотермия
• Тромбоз коронарной или легочной артерии
• Наруженный пневмоторакс
• Тампонада сердца
• Токсичные (отравление), терапевтические проблемы
Реанимационные мероприятия в неонатологии

(Антенатальное консультирование) Постановка задач команде, проверка оборудования

Рождение

Высушить новорожденного Поддерживать нормальную температуру тела Начать отсчет времени или отметить время

Оценить мышечный тонус, дыхание и частоту сердечных сокращений

Если новорожденный не дышит или при гаспинг-дыхании: Открыть дыхательные пути Сделать 5 искусственных вдохов Начать мониторинг SpO2 и ЭКГ

Повторить оценку состояния новорожденного Если нет прироста частоты сердечных сокращений, оценить движения грудной клетки

Если нет движения грудной клетки: Оценить положение головы новорожденного Рассмотреть возможность обеспечения проходимости дыхательных путей двумя специалистами Повторить искусственные вдохи Обеспечить мониторинг SpO2 и ЭКГ Оценить реакцию новорожденного

Если нет прироста частоты сердечных сокращений, оценить движения грудной клетки

Если есть движения грудной клетки: Если частота сердечных сокращений неопределенна или очень низка (менее 60 мин^-1), начать компрессии грудной клетки Координировать компрессии грудной клетки и положительное давление в дыхательных путях (3:1)

Оценивать частоту сердечных сокращений каждые 30 с. Если частота сердечных сокращений неопределенна или очень низка (менее 60 мин^-1), обеспечить внутривенный доступ и использовать лекарства

Обсудить ситуацию с родителями, провести дебрифинг с командой

Допустимая предутробная SpO2
2 мин 60%
3 мин 70%
4 мин 80%
5 мин 85%
10 мин 90%

На всех этапах алгоритма оценивать необходимость в дополнительной помощи

Поддерживать температуру тела

Увеличить поток кислорода (под контролем оксиметрии, если доступа)
Требования к рукописям, представленным для публикации в журнале «Неотложная кардиология»

Журнал «Неотложная кардиология» является печатным органом Общества специалистов по неотложной кардиологии и публикует статьи по всем аспектам диагностики, лечения и профилактики острых проявлений сердечно-сосудистых заболеваний, а также организации помощи подобным больным. В журнале публикуются передовые и оригинальные статьи, обзоры литературы, лекции, практические рекомендации, описания клинических случаев, комментарии, изложение мнений по проблеме, письма в редакцию, а также материалы круглых столов и дискуссий.

Авторские права

Фактом подачи статьи и сопровождающих файлов (далее Произведение) для публикации в журнале автор, а также все авторы данного произведения, если оно создано в соавторстве, согласны с тем, что предоставляют редакции журнала «Неотложная кардиология / Emergency Cardiology» исключительное и бессрочное право на использование Произведения на безвозмездной основе на территории России и зарубежных стран в следующих пределах и объеме:

- на публикацию Произведения в бумажном и/или электронном формате, производство репринтов Произведения;
- размещение его в сети Интернет как в открытом, так и платном доступе;
- отправку метаданных Произведения или полных текстов в различные индексирующие базы данных и депозитарии;
- воспроизведение Произведения, то есть изготовление одного и более экземпляров Произведения или его части в любой материальной форме, в том числе в форме звуко- или видео- записей (запись Произведения на электронном носителе также считается воспроизведением);
- распространение Произведения путем продажи или иного отчуждения его оригинала или экземпляров, публичный показ Произведения, то есть любая демонстрация оригинала или экземпляра Произведения непосредственно либо на экране с помощью технических средств, а также демонстрация отдельных кадров аудиовизуального произведения без соблюдения их последовательности непосредственно либо с помощью технических средств в месте, открытом для свободного посещения, или в месте, где присутствует значительное число лиц, не принадлежащих к обычному кругу семьи, независимо от того, воспринимается произведение в месте его демонстрации или в другом месте одновременно с демонстрацией произведения;
- импорт/экспорт Произведения или его частей в любых законных целях как на платной, так и на безвозмездной основе, оригинала или экземпляров Произведения в целях распространения, перевоз или другая переработка Произведения, доведение Произведения до всеобщего сведения таким образом, что любое лицо может получить доступ к Произведению из любого места и в любое время по собственному выбору;
- доведение до всеобщего сведения, размещение Произведения либо его частей в различных сборниках аналогичных произведений;
- предоставление прав, предусмотренных настоящей статьей, в полном объеме или в части третьим физическим и юридическим лицам как на платной, так и на безвозмездной основе.

Требования к рукописям

1. Рукопись должна быть напечатана стандартным шрифтом 14 пт с межстрочным интервалом 1,5 на одной стороне белой бумаги формата А4 (210 × 295 мм). Если статья отправляется почтой, необходимо вложить экземпляр в распечатанном виде, электронную версию на диске или USB флеш-накопителе, а также направление учреждения (для оригинальных статей). Рукописи могут быть представлены в электронном виде или на электронном носителе; в этом случае сопроводительные документы должны быть высланы в отсканированном виде по факсу или на адрес электронной почты журнала.

2. Титульный лист должен содержать название статьи, отражающее суть представленного материала, которое должно быть кратким и в достаточной степени информативным; список авторов с указанием фамилии, имени и отчества, места работы и должности каждого; полное название учреждения (учреждений) и отдела (отделов), где выполнялась работа; фамилию, имя, отчество, полный почтовый и электронный адрес, а также номер телефона (факса) автора, ответственного за контакты с
редакцией, электронные адреса каждого из авторов. Обязательно должна быть указана учетная запись ORCID каждого из авторов. Желательно также представить указанную информацию на английском языке.

3. Все участники, не отвечающие критериям авторства, должны быть перечислены в разделе «Благодарности».

4. При наличии существенного конфликта интересов, источника финансирования или спонсор проделанной работы данная информация должна быть раскрыта. Отсутствие указанных обстоятельств также должно быть констатировано.

5. На отдельной странице необходимо приложить резюме размером до 0,5 страницы машинописного текста на русском и, желательно, на английском языках. В конце резюме следует представить 3–10 ключевых слов, способствующих индексированию статьи в информационно-поисковых системах.

6. Статья должна быть тщательно отредактирована и выверена автором. Изложение должно быть ясным, без длинных введений и повторов.

7. Цитаты, приводимые в статье, должны быть тщательно выбраны; в списке литературы или сноске необходимо указать источник цитирования (автор, название работы, год, издание, том, страницы).

8. Сокращения слов не допускаются, кроме общепринятых сокращений химических и математических терминов. В статьях должна быть использована Международная система единиц (СИ). Все сокращения при первом упоминании должны быть раскрыты.

9. Специальные термины следует приводить в русском переводе и использовать только общепринятые в научной литературе слова.

10. При указании лекарственных средств должны использоваться международные непатентованные названия, кроме случаев, когда упоминание конкретного препарата того или иного производителя невозможно избежать из-за характера проведенного изучения или особенностей представляемых данных (при этом желательно ограничиться единственным упоминанием препаратов такого рода и при последующем изложении использовать международные непатентованные названия).

11. Таблицы должны быть наглядными, пронумерованными и озаглавленными. Все цифры, итоги и проценты в таблицах должны быть тщательно выверены автором и соответствовать тексту статьи. Каждый столбец в таблице должен иметь свой заголовок. В приведении необходимо указать единицы измерения ко всем показателям на русском языке и привести полную расшифровку всех сокращений и условных обозначений. В тексте статьи необходимо дать ссылку на номер соответствующей таблицы и при необходимости указать место ее расположения.

Вся информация, относящаяся к таблицам (название таблиц, информация в таблицах, подписи к таблицам), должна быть продублирована на английском языке.

12. Количество иллюстраций (фотографии, рисунки, чертежи, диаграммы) должно быть строго обусловлено необходимостью выделения надлежащего представления имеющегося материала. Фотографии должны быть контрастными, рисунки четкими. Каждая иллюстрация должна при необходимости иметь пометку «верх» и «низ». Графики и схемы не должны быть перергужены текстовыми надписями. Подписи к иллюстрациям должны располагаться внизу с указанием порядкового номера иллюстрации; в тексте необходимо дать ссылку на соответствующую иллюстрацию и при необходимости указать место ее расположения. В подписях необходимо привести объяснение значений всех кривых, букв, цифр и других условных обозначений.

Вся информация, относящаяся к иллюстрациям (название рисунков, текстовая информация на иллюстрациях, подписи к иллюстрациям), должна быть продублирована на английском языке.

13. Ссылки на литературные источники должны приводиться в статье в квадратных скобках строго по мере цитирования. В списке литературы каждый источник следует указывать с новой строки, как и для печатных ссылок (фамилии авторов, название, адрес ссылки и т. д.). В список литературы не включаются ссылки на диссертационные работы. За правильность приведенных в списках литературы данных ответственность несут авторы. Если в литературной ссылке допущена явная неточность или она не упоминается в тексте статьи, редакция оставляет за собой право исключить ее из списка. Фамилии иностранных авторов, названия их статей и зарубежных печатных изданий даются в оригинальной транскрипции.

Ссылки на литературные источники необходимо приводить следующими примерами:

1) русскоязычные источники на языке оригинала;

2) полный список литературы с переводом на английский язык названий статей, журналов, транслитерацией фамилий авторов на английском языке. В английском варианте переводятся названия журналов, если они есть, если нет, название дается в транслитерации, при этом в скобках указывается: (In Russian).
Указываются первые 6 авторов (требование РИНЦ) работы, если число авторов более 6, то пишется «и др.» (русскоязычные статьи) или «et al.» (для англоязычных статей).

14. Страницы рукописи должны быть пронумерованы.

15. На последней странице статьи должны быть подписи всех авторов.

Дополнительные требования к статьям
с изложением результатов научного исследования

К рукописи должно быть приложено официальное направление учреждения, в котором проведена работа. На первой странице статьи должны быть виза и подпись научного руководителя, заверенная печать учреждения. Кроме того, необходимы копии авторского свидетельства, удостоверения на рационализаторское предложение или разрешения на публикацию, если эти документы упомянуты в тексте статьи. Рукопись статьи должна включать титульный лист, резюме, ключевые слова, введение, детальную характеристику материала и методов с обязательным описанием способов статистической обработки, результаты, обсуждение, выводы, список литературы, а также при необходимости таблицы и иллюстрации. При описании использованной аппаратуры и лабораторных методик в скобках следует указать производителя и страну, в которой он находится; аналогичный подход может применяться для представления изучаемых лекарственных средств, но в остальном по ходу изложения следует использовать международные непатентованные названия.

В случаях, если научное исследование зарегистрировано в соответствующих регистрах, необходимо представить название регистра, регистрационный номер и дату регистрации.

Порядок рассмотрения рукописей

После получения рукописи рецензируются как минимум двумя специалистами в данной области. Рукопись направляется редакционным советом без указания авторов и названия учреждения; сведения о рецензентах авторам не сообщаются. При положительном заключении редакционного совета и отсутствии у них существенных замечаний редакционная коллегия принимает решение о публикации. Если рецензент выносит заключение о возможности публикации и необходимости внесения исправлений, рецензия направляется автору, которому предоставляется возможность доработать текст или при несогласии с заменяющимися аргументированно ответить рецензенту; переработанная статья направляется на повторное рецензирование. В случае отрицательного отзыва двух рецензентов редакционная коллегия принимает решение об отказе в публикации статьи, и об этом извещаются авторы, рукописи, направленные в редакционную коллегию, не возвращаются. При несовпадении мнений рецензентов и в иных спорных случаях редакционная коллегия привлекает к рецензированию дополнительных специалистов и после обсуждения принимает решение о публикации.

При рассмотрении оригинальных статей редакция журнала оставляет за собой право оценивать адекватность методов статистического анализа, полноту изложения результатов проведенного изучения, обоснованность выводов и при необходимости запрашивать у авторов недостающую информацию.

Редакционная коллегия оставляет за собой право сокращать и исправлять статьи.

Направление статей, ранее опубликованных или представленных для публикации в другом журнале, не допускается. Статии, оформленные не в соответствии с указанными Требованиями, могут быть возвращены авторам без рассмотрения.

Адрес для отправки рукописей

Предпочтительнее присылать статьи по электронной почте по адресу: info@acutecardioj.ru. Предварительно отсканированные сопроводительные документы в этом случае можно также пересылать по электронной почте или отправить по факсу 8 499 2614644. Адрес для направления рукописей по почте: 121552, г. Москва, ул. 3-я Череповская, 15А, Российский кардиологический научно-производственный комплекс Министерства здравоохранения РФ, Общество специалистов по неотложной кардиологии, редакция журнала «Нетоложная кардиология».
Чем интересна эта книга?

1. Она позволит врачам любых специальностей с разным опытом клинической работы подобрать рациональную схему антибактериальной, противовирусной, противогрибковой или антипаразитарной терапии в соответствии с современными стандартами мировой медицины.

2. Наглядные схемы и таблицы позволят легко и быстро найти ответ на возникший вопрос, мгновенно отыскать нужный препарат, без труда подобрать схему лечения.

3. Наличие обширного материала позволяет врачу выбрать тот препарат, который есть в больнице или аптеке, и избежать назначения дорогостоящих антибиотиков. Предлагаемые схемы лечения учитывают не только само инфекционное заболевание, но и возраст больного, сопутствующие заболевания, состояние иммунитета, источник инфекции (больничную или внебольничную) и т. д.

Среди медицинских книг справочник Сэнфорда занимает совершенно особое место, являясь главным источником информации для врачей всего мира.